最近よく巷で耳にするモノ. SVM, Support Vector Machine, さぽーとべくたーましん. これっていったい,どんなもんなんでしょう. なにやら便利そうなモノらしいので,ちょいと調べて要点をまとめてみようかな,なんて. でも,ただまとめただけだとそのへんの記事を読むのとなんにも変わらないので, コーディングするために必要な知識を中心にまとめてみることにします.
最近よく巷で耳にするモノ. SVM, Support Vector Machine, さぽーとべくたーましん. これっていったい,どんなもんなんでしょう. なにやら便利そうなモノらしいので,ちょいと調べて要点をまとめてみようかな,なんて. でも,ただまとめただけだとそのへんの記事を読むのとなんにも変わらないので, コーディングするために必要な知識を中心にまとめてみることにします.
Twitter でグラフ理論に関する話題が上がっていたので、最近調べている距離学習(distance metric learning)について少しまとめてみる。カーネルとか距離(類似度)とかを学習するという話(カーネルというのは2点間の近さを測る関数だと思ってもらえれば)。 この分野では Liu Yang によるA comprehensive survey on distance metric learning (2005) が包括的なサーベイ論文として有名なようだが、それのアップデート(かつ簡略)版として同じ著者によるAn overview of distance metric learning (2007) が出ているので、それをさらに簡略化してお届けする(元論文自体本文は3ページしかないし、引用文献のあとに表が2ページあって、それぞれ相違点と共通点がまとまっているので、これを見ると非
新年すっかりあけてました。 今年もよろしくお願いします。 年末年始はドタバタして昨年を振り返られなかったのですが、せっかくなので2008年に読んだ論文で私個人のベスト5を以下に列挙してみます。 D. Sontag, et. al. "Tightening LP Relaxations for MAP using Message Passing", UAI 2008 [pdf] Graphical ModelのMAP推定問題で従来解けなかった規模の複雑さの問題を高速にしかも最大であるという保障付きで解けるようにした。書いたメンバーはこの問題に関するオールスターのような感じ。解く問題は、n個の頂点からなるグラフで、各頂点には変数x1...xnがついていて、各頂点と各枝に対し関数gi(xi)、gij(xi,xj)が与えられた時、∑i gi(xi) + ∑ij gij(xi,xj)が最大となるよう
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く