タグ

MachineLearningと統計に関するamadeusのブックマーク (2)

  • 統計的機械学習入門 | 中川研究室

    導入pdf 情報の変換過程のモデル化 ベイズ統計の意義 識別モデルと生成モデル 最尤推定、MAP推定 データの性質 情報理論の諸概念 (KL-divergenceなど) 距離あるいは類似度 数学のおさらいpdf 行列の微分 線形代数学の役立つ公式 多次元正規分布 条件付き正規分布 Bayes推論pdf Bayseによる確率分布推定の考え方 多項分布、ディリクレ分布 事前分布としてのディリクレ分布の意味<\li> 正規分布と事後分布 指数型分布族 自然共役事前分布の最尤推定 線形回帰および識別pdf 線形回帰のモデル 正則化項の導入 L2正則化 L1正則化 正則化項のBayes的解釈 線形識別 2乗誤差最小化の線形識別の問題点 生成モデルを利用した識別 学習データと予測性能pdf 過学習 損失関数と Bias,Variance, Noise K-Nearest Neighbor法への応用 b

  • 統計ソフトRの「困った」を解決する12(+α)の方法|Colorless Green Ideas

    はじめに Rの「困った」 現在、統計処理ではRというソフトがよく使われている。Rは高機能であり、初心者から上級者まで使うことができる。とは言っても、Rに取りかかるのはなかなか難しい。テレビ洗濯機といった家電製品を買ったならば、紙の説明書が付いてくるので、とりあえずそれを見れば、最初の使い方も分かるし、困ったときにどうすれば良いか分かる。Rのようなソフトウェアではそうはいかない。「困った」を解決してくれる紙の虎の巻 [1] は付いてこない。また、メーカーのサポートが付いた商品なら、メーカーに問い合わせるという手段もあるが、フリーソフトのRではそうもいかない。 結局、Rで何か「困った」ことが起きた場合、自分で色々と調べなくてはならない。こう言うと、Rは大変そうだと思う人もいるかもしれない。だが、主にインターネットを通じて、Rの説明書代わりのさまざまな情報が提供されている。 この記事では、「コ

  • 1