タグ

PRMLとalgorithmに関するbasiのブックマーク (1)

  • Perceptron を手で計算して理解してみる (nakatani @ cybozu labs)

    Perceptron の実装とか見ると、ものすごく簡単なので、当にこれで学習できちゃうの? と不安になってしまいました(苦笑)。 こういうときは、実際にパーセプトロンが計算しているとおりに、紙と鉛筆で計算してみて、期待する結果が出てくることを確認してみたくなります。 参照する教科書は「パターン認識と機械学習・上」(PRML) の「 4.1.7 パーセプトロンアルゴリズム」。 短い節です。必要最低限のことを一通り書いてある感じかな。 計算に用いるサンプルですが、手で計算できる規模でないといけないので、論理演算の AND を試してみることにします。 簡単に勉強 ちゃんとした説明は PRML などを見て欲しいですが、とても簡単にまとめます。 2値の線形識別モデルは、N 次元空間内を (N-1) 次元の超平面(決定面)で分割することで、入力ベクトル x から得られる特徴ベクトル φ(x) が2つ

  • 1