Word Tour: One-dimensional Word Embeddings via the Traveling Salesman Problem...

目次 訳者まえがき はじめに 1章 Rを利用する 1.1 機械学習のためのR 1.1.1 Rのダウンロードとインストール 1.1.2 IDEとテキストエディタ 1.1.3 Rパッケージの読み込みとインストール 1.1.4 機械学習のためのRの基礎知識 1.1.5 Rに関する情報 2章 データの調査 2.1 探索と確証 2.2 データとは何か? 2.3 データ内の列の型を推論する 2.4 意味推論 2.5 数値による要約 2.6 平均値、中央値、最頻値 2.7 分位数 2.8 標準偏差と分散 2.9 探索的データの可視化 2.10 複数の列の関係の可視化 3章 分類:スパムフィルタ 3.1 白か黒か?二値分類 3.2 やさしい条件付き確率入門 3.3 初めてのベイズスパム分類器を書く 3.3.1 分類器を定義し、非スパム(難)でテストする 3.3.2 分類器をすべての種類の電子メールに対し
最近、人に本を薦める事が多くなった。とりあえずこの辺を読むといいですよ的なリストを作っておくと便利だと思ったので作ることにした。 以下、「事前知識のいらない入門本」「事前知識はいらないけど本格的な本」「事前知識がないと何言ってるかわからないけど有益な情報が満載な本」の3つにわけて列挙する。 事前知識のいらない入門本 数式少なめ、脳負荷の小さめな本をいくつか。何をやるにしてもデータ構造、アルゴリズム、数学はやっておくと幸せになれるよ。 情報検索と言語処理 データマイニングとか自然言語処理とかやりたい人にはとりあえずこれ。さすがに古い話が多くなってきたのでそろそろ新しい入門用情報検索本がでないかなあと思っている。 図解・ベイズ統計「超」入門 伝説のベイジアン先生がベイズの基礎を教えてくれる本。ベイズやりたい人はこれ。 珠玉のプログラミング データ構造とかアルゴリズムとかの考え方の基礎を教えてく
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く