Microsoft Learn では、対話的な方法で、従来の機械学習の概要を理解することができます。 これらのラーニング パスは、ディープ ラーニングのトピックに移行するための優れた基盤にもなり、各自の生産性を向上させます。 最も基本的な従来の機械学習モデルから、探索的データ分析やカスタマイジングのアーキテクチャまで、ブラウザーを離れることなく、概念的内容や対話型の Jupyter Notebook を簡単に把握することができます。 知識と興味に応じて自分のパスを選択してください。 オプション 1: 完全なコース: 機械学習のためのデータ サイエンスの基礎 ほとんどのユーザーには、このパスがお勧めです。 これには、概念の理解を最大限に高めるカスタム フローを備えた、他の 2 つのラーニング パスと同じモジュールがすべて含まれています。 基になる概念と、最も一般的な機械学習ツールでモデルを構
基本的に競馬なんてやるべきではないと私は思っている。胴元の取り分が多いからだ。宝くじに比べればまだましだが、それでも賭け金の20~30%は胴元に取られることになる。*1 しかし今回は、ちょっと思い立って競馬の予測をやってみることにした。 理由は馬券の安さだ。私は現在、資金量が少ない人間でも不利にならない投資先を探しているのだが、馬券の一枚100円という安さは魅力的に映る。株の場合にはどんな安い株であれ最低購入額は数万円以上*2なので、ある程度まとまった資金が必要になる。 また、競馬には技術介入の余地(努力次第で勝利できる可能性)がある。 例えばこんな例がある。 160億円ボロ儲け!英投資会社が日本の競馬で荒稼ぎした驚きの手法 - NAVER まとめ 彼らは統計解析によって競馬で勝っており、その所得を隠していたらしい。こういうニュースが出るということは、解析者の腕次第では競馬で勝てる可能性が
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く