コンテンツブロックが有効であることを検知しました。 このサイトを利用するには、コンテンツブロック機能(広告ブロック機能を持つ拡張機能等)を無効にしてページを再読み込みしてください。 ✕
コンテンツブロックが有効であることを検知しました。 このサイトを利用するには、コンテンツブロック機能(広告ブロック機能を持つ拡張機能等)を無効にしてページを再読み込みしてください。 ✕
やっぱGPTを仕組みから勉強したい、という本をいくつか見つけたのでまとめておきます。 まず理論的な概要。 機械学習からニューラルネットワーク、CNNでの画像処理、トランスフォーマーでの自然言語処理、音声認識・合成、そしてそれらを組み合わせたマルチモーダルと章が進むので、理論的な概観を得るのにいいと思います。 最初は数式が多いのだけど、Σをfor文だと思いつつ、定義が説明文中に埋まってるPerlよりたちが悪い記号主体言語だと思えば読めるけどめんどくさいので飛ばしても問題ないと思います。 深層学習からマルチモーダル情報処理へ (AI/データサイエンスライブラリ“基礎から応用へ” 3) 作者:中山 英樹,二反田 篤史,田村 晃裕,井上 中順,牛久 祥孝サイエンス社Amazon で、もういきなり作る。 トークナイザーから全部つくっていきます。TensorFlowでBERTをつくってGPT2をつくる
最近「100万件の文章をChatGPTに学習させて応答チャットを作りました」みたいなニュースがあって、違和感があります。 ということで「ChatGPTにブログ全エントリを学習させて「おしえてきしださん」を作る」としたときに、どんな仕組みになっていて、なぜ「ChatGPTに文章を学習させて」ということに違和感があるか見てみます。 とりあえずこんな感じで、質問に対して答えれてるっぽいチャットができました。 まず、Embedding APIを使って、全エントリのベクトルを得てMongoDBに突っ込んでおきます。 このエントリでやってるので、そのまま使います。 GPTのEmbeddingを利用してブログの投稿に対する近いものを探し出す - きしだのHatena 質問が入力されたら、質問文も同じようにEmbeddingでベクトルをとってきます。 var req = EmbeddingRequest.
コンテンツブロックが有効であることを検知しました。 このサイトを利用するには、コンテンツブロック機能(広告ブロック機能を持つ拡張機能等)を無効にしてページを再読み込みしてください。 ✕
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く