
業務でなくてはならないツールExcel。Excelのマクロを使って自動化することもできるが、Pythonを使うとより幅広いライブラリと併用できて非常に便利だ。とは言え、PythonでExcelを自動操縦する場合、「openpyxl」を使う方法と「pywin32」を使う方法の二台手法がある。ここでは、そのメリット・デメリットを比較してみよう。 Pythonの二大Excelライブラリを比較してみよう 「openpyxl」「pywin32」のどちらが良いのか? PythonでExcelを操作して、業務の自動化をする場合、「openpyxl」を使う方法と「pywin32」を使う方法の二大手法がある。どちらにもメリットがある。 まず、どちらのライブラリを使う場合も、基本的なExcelのシートの内容を読み書きすることができる。しかも、双方ともオープンソースであり無料のライブラリだ。しかし、決定的に異な
本書ではPythonを使い、火星や木星や銀河の最果てを、詩人の魂を、高度な金融の世界を、選挙の不正を、ゲーム・ショーのトリックを、探っていく。マルコフ連鎖解析のような技術を使って俳句を詠み、モンテカルロ・シミュレーションで金融市場をモデル化し、イメージ・スタッキングで天体写真を改善し、遺伝的アルゴリズムで巨大なネズミを育てる。それとともにpygame、Pylint、pydocstyle、tkinter、python-docx、matplotlib、pillowといったモジュールの経験を楽しく積むことができる。 この本は2冊目のPythonの本とみなすことができる。完全な初心者向けの本や入門クラスの後に続く本、あるいは補完する本となることを狙っている。「impractical」(実用的でない)というタイトルに反して、本書の内容はかなり実用的で、文字列やコレクションの操作といった基本的なことか
特長 Pythonユーザが待ちに待ったPythonによるMCMC本ではないでしょうか。原著タイトルが『Bayesian Methods for Hackers』だけあって、プログラマ・エンジニア向きだと思います。数式はびっくりするほど出てこない代わりに、Pythonコードは非常にたくさんでてきます。そしてPyMCの使い方が基礎から説明してあって丁寧です。自分でコーディングする際は原著のGitHubリポジトリを活用しましょう(なんとStarが10000個を超えてる!)。 Pythonで体験するベイズ推論 PyMCによるMCMC入門 作者: キャメロン・デビッドソン=ピロン,玉木徹出版社/メーカー: 森北出版発売日: 2017/04/06メディア: 単行本(ソフトカバー)この商品を含むブログを見る 購入を迷っている人の一番の心配は、本書のPyMCのバージョンが1つ前のPyMC2であることだと思
2016-12-23更新: 電子書籍書籍版の情報を更新しました。電子書籍版も好評発売中です! Pythonを使ってクローリング・スクレイピングを行い、データを収集・活用する方法を解説した書籍です。 Pythonの基本から、サードパーティライブラリを使ったスクレイピング、様々なサイトからのデータ収集・活用、フレームワークScrapyの使い方、クローラーの運用までを扱っています。 Pythonクローリング&スクレイピング -データ収集・解析のための実践開発ガイド- 作者: 加藤耕太出版社/メーカー: 技術評論社発売日: 2016/12/16メディア: 大型本この商品を含むブログ (3件) を見る クローリング・スクレイピングとPython Pythonは言語自体の書きやすさ、ライブラリが充実していること、データ解析との親和性が高いことなどから、クローリング・スクレイピングに向いている言語です。
Python及びテキストマイニングの超初心者向け入門書として 友人と週1回ペースで行っている統計&プログラミングの勉強会で、以前、Pythonの入門書は何がいいだろうかと考えて本書を取り上げました。当時ブログにはまとめていなかったのでまとめておきます。 言語研究のためのプログラミング入門: Pythonを活用したテキスト処理 作者: 淺尾仁彦,李在鎬出版社/メーカー: 開拓社発売日: 2013/06/25メディア: 単行本この商品を含むブログ (3件) を見る 本書はほんとにプログラミングというものに全く触れたことがない人向けのものなので、内容はちょっと簡単すぎた感もあるのですが、勉強会ではRばかりやってきてPythonには皆慣れているわけではないし、テキストマイニングの入門という意味もこめて一応やりました。初心者でもすぐ理解できる内容なのでさっさと終わらせようと思い、1回2章ずつのペース
きっかけ この記事を書いた人のレベル 今回の読書プラン Python 環境の構築 インストール先の環境 Anaconda (Python 3) のインストール 科学計算に関するライブラリのインストール サンプルの実行に必要なライブラリのインストール サンプルの実行 サンプルコードを実行していて引っかかったところ 3章 12〜13章 Python の勉強 速習コースを読んでみた感想 きっかけ 機械学習の重要性は、それこそ「ビッグデータ」という言葉が出てきた頃からいろいろな人が訴えていますが、最近は特にツールが充実して、敷居が下がってきたように感じています。 そろそろ自分でも機械学習関係のツールを使えるようになりたいと思っていたのですが、そんなときに「具体的なコード例が多くて読みやすい」という本書の評判を聞いて、読み始めました。 Python機械学習プログラミング 達人データサイエンティストに
本書では数学的概念を実装するプログラムで実際に問題を解決しながら、その応用法を探求します。具体的には、図形変換、顔検出、画像圧縮、画像補正、ページランク、機械学習、暗号と秘密共有などの例を使い、ベクトルと行列、それらを動かすアルゴリズムについて学びます。対象は、プログラマーおよび具体計算を通じて線形代数を学びたい学生。厳密な証明が目的ではないので数学に詳しくなくてもかまいません。Python 3プログラムを用いることで図やグラフからベクトルと線形変換を視覚的にとらえることができるため読者はイメージをつかみやすいでしょう。章末の問題を解くことで自分がその章で何を学んだのか、また自分の理解度を確認できます。 関連ファイル サンプルコード サンプルコード 正誤表 ここで紹介する正誤表には、書籍発行後に気づいた誤植や更新された情報を掲載しています。以下のリストに記載の年月は、正誤表を作成し、増刷書
Pythonは書きやすくて読みやすい、使うのが楽しいプログラミング言語です。本書では、学生や生徒、プログラミングの初心者が、数学の問題を具体的に解く楽しみをPythonを用いて体験します。方程式の解を求めたり、統計や確率を計算したり、放物線運動をプロットしたり、フラクタル図形を描いたり、フィボナッチ数と黄金比の関係を探ったりします。同時に、matplotlibとSymPyの使い方も学びます。数学とプログラミングの両方の知識と技術を身につけることができる、まさに一石二鳥の一冊です。 目次 日本語版まえがき 謝辞 はじめに 1章 数を扱う 1.1 基本数学演算 1.2 ラベル:名前に数を割り当てる 1.3 さまざまな種類の数 1.3.1 分数を扱う 1.3.2 複素数 1.4 ユーザ入力を受け取る 1.4.1 例外と不当入力の処理 1.4.2 分数と複素数を入力 1.5 数学を行うプログラムを
前回の書籍リストは、基本的には「そこそこ統計学のことは知っていて」「機械学習とはどんなものかというイメージがあって」「Pythonの初歩ぐらいはできて」「本を見ながらで良ければRを使える」人たちを対象にしたものでした。 なのですが、世の中そんな最初から基礎レベルであってもきちんとスキルが揃ってる人なんてそうそう多くないわけで*1、特に今の「ビッグデータ」「データサイエンティスト」ブームを受けて勉強を始める人のほとんどが完全な初心者でしょう。 ということで、僕が実際に読んだことがあったり人から借りて読んでみたり書店で立ち読みしたりしたものの中から、そういう初心者向けのテキストを5冊に絞って紹介してみます。なお、毎回毎回しつこいですが下のリンクから書籍を購入されても、儲かるのは僕ではなくはてななのでそこのところよろしくです(笑)。 データ分析の「考え方」を身に付けるために 色々評判の良いものも
執筆陣12人中8人が直接の知人友人というこの新刊書でございますが。 データサイエンティスト養成読本 [ビッグデータ時代のビジネスを支えるデータ分析力が身につく! ] (Software Design plus) 作者: 佐藤洋行,原田博植,下田倫大,大成弘子,奥野晃裕,中川帝人,橋本武彦,里洋平,和田計也,早川敦士,倉橋一成出版社/メーカー: 技術評論社発売日: 2013/08/08メディア: 大型本この商品を含むブログ (4件) を見る もちろん僕も発刊が決まってAmazonに予約ページができた時点でポチりまして、読んでみたところあまりにも内容が素晴らしかったので早速現職場の図書コーナーに持ち込んだ次第です(笑)。ということで、僭越ながら書評など書かせて頂こうかと思います。 ざっくり内容紹介 正直言って、ものすごーーーく網羅的で非常によく出来ています。1ページ目から順に読んでいっても初学
はじめに 今回は、ウェブを通じて無料で読むことができる統計に関する書籍を紹介したい。英語で書かれた本が多いが、日本語で書かれた本も若干ある。 入門書 まず、統計の初学者のために書かれた入門書を紹介したいと思う。 福井正康 (2002). 『基礎からの統計学』基礎から扱っている統計の入門書である。統計を扱う際に必要となる場合の数、確率などについて詳しく説明している。理解を助けるための演習問題とその解答がついている。統計処理用のソフトとしてはExcelを使っている。同じサイトに社会科学系の学生向けの数学の教科書もある。 小波秀雄 (2013). 『統計学入門』基礎から扱っている統計の入門書。内容としては、記述統計、確率、確率分布、簡単な推定・検定、相関と線形回帰などがある。確率や確率分布などの理論的な話が占める分量が多いので、分量のわりには、具体的な統計手法はあんまり載っていない。もちろん理論
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く