タグ

関連タグで絞り込む (2)

タグの絞り込みを解除

プログラマとグラフに関するdaitomのブックマーク (2)

  • 『グラフニューラルネットワーク』を上梓しました - ジョイジョイジョイ

    グラフニューラルネットワーク (機械学習プロフェッショナルシリーズ) 作者:佐藤 竜馬講談社Amazon 講談社より『グラフニューラルネットワーク(機械学習プロフェッショナルシリーズ)』を上梓しました。 グラフニューラルネットワークはグラフデータのためのニューラルネットワークです。化合物やソーシャルネットワークのようなグラフデータの解析に使うことができます。また後で述べるように、テキストも画像もグラフなのでテキストや画像の分析にも使えますし、それらを組み合わせたマルチモーダルなデータにも適用できます。要は何にでも使うことができます。この汎用性がグラフニューラルネットワークの大きな強みです。 稿ではグラフニューラルネットワークを学ぶモチベーションと、書でこだわったポイントをご紹介します。 グラフニューラルネットワークは何にでも使える 付加情報をグラフとして表現できる グラフニューラルネッ

    『グラフニューラルネットワーク』を上梓しました - ジョイジョイジョイ
  • 因果推論とグラフ理論 - エクサウィザーズ Engineer Blog

    こんにちは。数理最適化ギルドでエンジニアをしている加藤です。 ある自社プロダクトの開発を通じて因果推論について勉強する機会がありました。因果推論は統計の分野ですが、その中で数理最適化技術が使えることを知り、とても面白かったのでその内容をシェアしようと思います。具体的には組合せ最適化問題のひとつである最小カット問題が、因果推論のタスクの一部である識別可能性に利用できるという話をします。 前半は因果推論についての概説で特に予備知識は仮定していないです。後半は計算時間やネットワークフローなどのアルゴリズムを知っていると読みやすいと思います。 因果推論とは 因果推論の目的 統計的因果推論とは事象の間の因果効果を実験データや観測データから推定することを目的とした統計学の一分野です。単に因果推論といった場合は統計的因果推論を含むより広い概念を指すことがありますが、簡単のため以下では因果推論といえば統

    因果推論とグラフ理論 - エクサウィザーズ Engineer Blog
  • 1