タグ

Hadoopに関するdamehumanのブックマーク (3)

  • そろそろHadoopについてひとこと言っておくか - nokunoの日記

    もうこの手の話題は出尽くした感がありますが、最近Hadoopについて考えることが多いので、エントリにしてみます。なお、ここではベーシックなMapReduce+HDFSのことをHadoopと呼ぶことにします。 HadoopとはHadoopとは言わずと知れたGoogleMapReduce/GFSのオープンソースのクローンです。MapReduceではプログラマはMapとReduceという2つの関数を書くだけで、並列分散処理をすることができます。これは(1) データを実際に持つマシンにプログラムを配布する (2) MapとReduceをつなぐShuffleフェーズでキーをグループ化してソートする、(3) 障害時のフェールオーバーやレプリケーション、といった処理をフレームワーク側が受け持つことによって、プログラマ側の負担を減らすものです。GFSに対応するHDFSにはファイルをクラスタに分散して保存

  • Hadoop を使うべき場合・使うべきでない場合 - 武蔵野日記

    id:ny23 さんが動的ダブル配列を使って Wikipedia のテキスト処理を高速化なんてのを書いている。たぶんこれのエントリを見る前にMapReduce と四身の拳を見た方がコンテクストが分かると思う。Hadoop 使ってなんでもできそう! Hadoop の勉強したい!なんて思っている人は読んでみるとよい。 自分の考えについて書いておくと、自分は誰も彼も Hadoop 使いたがる状況には辟易している。ほとんどの人には不要なはずだし、そもそも Hadoop は(ny23 さんも書かれているが)メモリに乗り切らない大規模データを扱いたいときに効力を発揮するのであって、メモリに乗り切るくらいのサイズであれば、データ構造を工夫したり適切なアルゴリズムを選択した方が遥かによい(id:tsubosaka さんも実験されていたが)。たとえデータが大規模であったとしても、たとえば形態素解析なんかのタ

    Hadoop を使うべき場合・使うべきでない場合 - 武蔵野日記
  • Hadoop で Wikipedia のテキスト処理を900倍高速化 - 武蔵野日記

    今月中に実験の実装が終わるくらいでないと来月の投稿〆切に間に合わないので、今週から研究室のサーバに Hadoop をインストールしている。 研究室にはサーバが20台弱あるのだが、そのうち10台強を使うことにして設定。これくらいの規模だと「大規模」と言うのは憚られるかもしれないが(Yahoo!Google と比べて、という意味で。)、中規模、くらいには言ってもいいだろうし、たぶん、多くの大学や企業で使える台数もこれくらいだと思うし、大企業にいないとできない研究をするのも大変価値があるが、他の人たちがやる気になれば真似できる研究をするのも(データやインフラ勝負ではなくアイデア勝負になるので苦しくはあるのだが)重要だと考えている。 たとえば、数台でも分散環境の恩恵が受けられる、というのはPFI が出した Hadoop の解析資料で知っていたので、初めて導入したときは参考になったし、こういう

    Hadoop で Wikipedia のテキスト処理を900倍高速化 - 武蔵野日記
  • 1