はじめに 2018年8月19日から23日にかけてロンドンで行われたKDD2018(データマイニングの世界的なカンファレンス)に採択されていた『Customized Regression Model for Airbnb Dynamic Pricing』なる論文を読みました。 Airbnbで実装されている価格推薦モデルについての論文で、 ビジネス・ユーザー視点を取り入れており、 「価格を下げれば予約されていた」と、「もっと価格を上げていてもよかった」というニーズ それをうまくモデル化していて、 上記を損失関数として定量化 さらにシンプルな構造で理解しやすい ①予約確率の予測→②最適価格の提案→③パーソナライズと、マクロ→ミクロに落ちていく構造 という点において優れたデータサイエンスの応用例であると感じたため、主要な論点を要約しつつ解説に取り組んでみようかと思います。 はじめに 論文の要旨 最