こんにちは。スマートニュースの高橋力矢です。前回のブログでデータ分析+ゲーム理論を題材として、帰納と演繹をまとめる利点をお伝えしました。なんらかの入力 (e.g., ゲーム理論における利得表) があり、特定のアルゴリズム (e.g., 各プレイヤーの戦略的意思決定) を記述することで出力 (e.g., ナッシュ均衡) を得るアプローチは、ほとんどのソフトウェア・エンジニアが慣れ親しんでいるプログラミングそのものです。つまり多くのエンジニアが手がけるプログラミングの実態は演繹的プログラミングです。ではこの対極に位置する帰納プログラミング (Inductive Programming) はどの程度進歩しているでしょうか。 帰納プログラミングの一分野である確率プログラミング (Probabilistic Programming) は統計学や機械学習との関係が密接で、日本でも利用者の多いStanを