ブックマークしました ここにツイート内容が記載されます https://b.hatena.ne.jp/URLはspanで囲んでください Twitterで共有
高校数学で複素数を習った際、 「何これ?何の意味があるの?」 という疑問を持った人は多いのではないでしょうか。 それまでは、 「2次方程式は、解を持つ場合と持たない場合がある」 という話だったのに、それを無理矢理 「2乗すると-1になる数を考えて解いてみましょう」 と言って計算させて、何なのこれは?という話です。 確かに、 「虚数単位『i』は、普通の文字だと思って計算し、ただし、2乗すると-1になる」 という計算ルールに従って計算すれば、式変形はできるのですが、 なぜそんな計算をする必要があるのでしょうか? そこで、 「数の概念を拡張してまで解きたい二次方程式」 として、数列の三項間漸化式を考えてみたいと思います。 複素数というものを新たに導入する動機づけがほしい 「何の役に立つのか?」 を簡単に説明する事例を挙げるのは、結構難しいです。 三次方程式の解の公式(カルダノの公式)で必要になる
大学と大学院の,理工系の講義ノートPDFのまとめ。 PDF形式の教科書に加え,試験問題と解答,および授業の動画も集めた。 学生・社会人を問わず,ぜひ独学の勉強に役立ててほしい。 内容は随時,追加・更新される。 (※現在,60科目以上) カテゴリ別の目次: (1) 数学の講義ノート (2) 物理学の講義ノート (3) 情報科学の講義ノート (4) 工学の講義ノート ※院試の問題と解答のまとめはこちら。 (1)数学の講義ノート 解析学: 解析学の基礎 (大学1年で学ぶ,1変数と多変数の微分・積分) 複素解析・複素関数論 (函数論) ルベーグ積分 (測度論と確率論の入門) 関数解析 (Functional Analysis) 代数: 線形代数 (行列論と抽象線形代数) 群論入門・代数学 (群・環・体) 有限群論 (群の表現論) 微分方程式: 常微分方程式 (解析的および記号的な求解) 偏微分方程
フィボナッチ数を一辺とする正方形 ウィキペディア日本語版のメインページ(2007年〜2012年)で使われていたイメージ画像もフィボナッチ数列を利用していた[注釈 1]。 フィボナッチ数(フィボナッチすう、英: Fibonacci number)は、イタリアの数学者レオナルド・フィボナッチ(ピサのレオナルド)に因んで名付けられた数である。 フィボナッチ数列(フィボナッチすうれつ、(英: Fibonacci sequence) (Fn) は、次の漸化式で定義される: 第0~22項の値は次の通りである: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, …(オンライン整数列大辞典の数列 A000045) 1202年にフィボナッチが発行した『
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "エラトステネスの篩" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2019年6月) エラトステネスの篩 (エラトステネスのふるい、英: Sieve of Eratosthenes) は、指定された整数以下の全ての素数を発見するための単純なアルゴリズムである。古代ギリシアの科学者、エラトステネスが考案したとされるため、この名がついている。
先日の記事 誰もがどこかでつまずいた→小学校の算数から大学数学まで126の難所を16種類に分類した 読書猿Classic: between / beyond readers を読んだ人から「やりなおし魂に火をつけるだけつけて放置するのは無責任だ、何をやればいいのか教えろ」という問い合わせがあった。 小学校の算数レベルから微積分など高校+αまで、ついている予備テストをやれば、どの章は飛ばしていいか、どこの章のどの問題を勉強すればよいかを教えてくれる往年の名著(が復刻してた) を紹介しようと思ったが(科学を志さない人にも勧められる)、買い損なった場合と人のために、web上の教材をリストにして、先の記事の補いとする。 (2017.9.6 リンク切れ等、訂正しました) 小学校〜高校 小学校の算数 中学校の数学 高校数学 大学数学基礎 小学校〜高校 小学校「算数科」,中学校・高等学校「数学科」の内容
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く