前回までRNN(LSTM)や他の識別器で為替の予測を行ってきましたが、今回はCNNで予測をしてみたいと思います。 第1回 TensorFlow (ディープラーニング)で為替(FX)の予測をしてみる 第2回 ディープじゃない機械学習で為替(FX)の予測をしてみる データの準備 前回まで終値の差分を学習データとしていましたが、今回は終値そのものを学習データにしてみます。 また、今回はUSDJPYの1時間足、2008年1月1日〜2017年3月10日を利用し、前半95%を学習、後半5%をテスト(バリデーション)としました。 CNNは画像認識で高い精度を発揮していますが、画像以外でも応用することは可能です。例えば終値が以下のようなデータがあったとします。 これを画像に変換します。 このように1次元の画像と見なすことができます。 色が複数チャネルあるように見えますが実際はグレースケールです。カラーマッ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く