Search and analytics, data ingestion, and visualization – all at your fingertips.
この記事は、Justsystems Advent Calendar 2017の23日目の記事です。 今回はElasticsearchでランキング学習をやってみます。 ランキング学習について ランキング学習は機械学習のモデルを用いて検索ランキングを最適化することをさします。 検索結果のランキングはtf-idfやBM25、ページランクなどを使うことが多いと思いますが、ランキング学習により検索サーバーのクリックログなどに基づき順位の最適化を行うことができます。 その際、処理速度などの問題から順位の最適化はトップN件のリランクという形で行われることが多いです (下図参照)。 Elasticsearchはこのようなランキング学習を行うことができるプラグインが開発されていますが、まだ詳細を確認できていなかったのでこの機会に試してみました。誰かの参考になれば幸いです。 この記事では次のことをします。 T
オブザーバビリティも、セキュリティも、検索ソリューションも、Elasticsearchプラットフォームならすべて実現できます。
今回、第1回目の Elasticsearch 入門という事で、今回は「インデックスを設計する際に知っておくべき事」というテーマにしてみました。ここでのインデックスの設計とは RDB のデータベースとかテーブル、ビューの設計に当たるところです。 Elasticsearch は RDB など他のデータベスに比べ、その設計方法も結構独特です。(と言うか同じ事を実現するにしても色々な方法が用意されていて、さらにアプリケーション要件〜システムアーキテクチャ、運用面など広い範囲が関わってくる)RDB との比較も交え解説していきます。 Index で分けるか? Type で分けるか? 例えば、商品情報を保存するインデックスの設計を考えてみましょう。いわゆるRDBの設計で言うところのテーブル設計ですね。おそらくRDBではアプリケーション要件のみが、その設計の中心になるはずです。例えば、商品名や説明、価格情
オブザーバビリティも、セキュリティも、検索ソリューションも、Elasticsearchプラットフォームならすべて実現できます。
NewRelic / Elasticsearch ではじめるSREに必要な性能監視入門 https://supporterzcolab.com/event/177/ にて話した資料です!
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く