こんにちは。 現役エンジニアの”はやぶさ”@Cpp_Learningです。最近、距離学習を楽しく勉強しています。 今回は、角度を用いた深層距離学習のSphereFace・CosFace・ArcFace・AdaCosについて勉強したので、備忘録も兼ねて本記事を書きます。
この記事について Jetson NanoにGPU(CUDA)が有効なOpenCVをインストール PythonでOpenCVのCUDA関数を使って、画像処理(リサイズ)を行う C++でOpenCVのCUDA関数を使って、画像処理(リサイズ)を行う 結論 (512x512 -> 300x300のリサイズの場合) 以下のように高速化できた CPU: 2.8 [msec] GPU: 約0.8 [msec] 注意 画像サイズと処理内容によっては、GPUの方が遅くなるので注意 環境 Jetson Nano (jetson-nano-sd-r32.2-2019-07-16.img) OpenCV 4.1.0 測定方法 処理時間測定の前には、以下コマンドを実施 ### 依存パッケージのインストール ### sudo apt update sudo apt upgrade sudo apt -y insta
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く