統計学、パターン認識等で、ROC(Receiver Operating Characteristic;受信者動作特性)曲線という概念が出てきます。また、データ分析・予測のコンペティションサイトKaggleでも、提出されたアルゴリズムの識別性能評価にこのROC曲線に基づくAUC(Area Under the Curve)というものを使っています。(例えばココ) このROC曲線、ちょっとわかりにくいので、まとめてみました。また、アニメーションでグラフを動かしてイメージを付けるということもやってみます。 1. ROC曲線に至る前説 まず、例として健康に関するとある検査数値データがあったとします。 この検査数値は健康な人は平均25, 標準偏差2の正規分布に従い分布しています。(下記図の緑の曲線) 病気の人は平均30、標準偏差4の正規分布に従い分布しています。(下記の図の青の曲線) グラフにすると下