Bayesian Setとは集合D_Cが与えられたとき、そこから「類推」して、元の集合C⊃D_Cに入る元xを(「自信」の度合いを表す数値つきで)求めるというもの。ただし、D_Cの元やxは特徴データ{c_i}をもっているとする。で、原論文を読むとΓ関数がずらずらでてきておどろおどろしいのだけれど、実はやっていることは簡単だということに気がついたので、書いてみる。簡単のために、特徴はあるかないかの2値的とする。(一般的には連続量も扱える。)すると、Bayesian Setのアルゴリズムがやっていることは、xについて観測された特徴c毎に重みwを足していくだけである。重みwはハイパーパラメーターα、βを使って,と書ける。ハイパーパラメータというと難しいそうだが、α_t = (Nc:D_Cでcをもつ元の数) + α、β_t = (N-Nc:D_Cでcを持たない元の数) + βと定めるので、α、βは先
Bayesian Sets (Ghahramani and Heller, NIPS 2005)は Google Sets と同じようなことをベイズ的に行うアルゴリズムです。 いくつかアイテムを入れると, それを「補完する」ようなアイテムを 返してくれます。 これは NIPS の accepted papers が出た去年の8月から気になっていて, 本会議ではオーラルの発表もあって大体のやっていることはわかった ものの, 何と(本会議の時も!)論文がなく, 直接Hellerに連絡して もらえるように頼んでいたところ, Online proceedings の締切りがあった 時に連絡があって, 読めるようになりました。(リンクは下のページ参照) 岡野原君に先に 紹介 されてしまいましたが, 以下は, 岡野原君が書いていない話。 Bayesian Sets は, アイテム集合 D に対して,
_ [コンピュータ] Bayesian Sets何はともあれ一番目立つところにリンクをば。 ここのところちょっと時間が取れたので、以前から気になっていたBayesian Setsを実装してみました。Bayesian Setsは、ある単語を入力すると、それと関係が深い単語を推測して返してくれるというものです。Google Setsというサービスを聞いたことがある方もおられるかもしれませんが、やりたいことはあれと同じです。理論的な話に興味がある場合はここを参照するか、元論文に当たってください。 論文で「高速」と紹介されているだけあって、Wikipediaから17万文書を使って学習させたにも関わらず結構な速度で動いてくれています。辞書に登録されている単語数も44万と豊富。これだけのものを現実的な時間で捌いているというだけでも、かなり驚きです。無理やりアドホックに処理を端折って計算量を減らしている
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く