4つ以上の平面に囲まれた立体を「多面体」と呼び、中でもすべての面が合同の正多角形で構成される「正多面体」は最も美しい対称性をもつ立体で、正四面体など5種類しかないことが知られています。この正多面体の亜種として、要件を緩和することで対称性を持つ多面体が考え出されてきましたが、実に400年ぶりに新しい対称性多面体がアメリカの数学者によって考案されました。 After 400 years, mathematicians find a new class of solid shapes http://theconversation.com/after-400-years-mathematicians-find-a-new-class-of-solid-shapes-23217 「正多面体」(通称、プラトンの立体)は、すべての面が合同な正多角形で構成され、すべての頂点で同じ数の面が接する立体で、正四
出典は列挙するだけでなく、脚注などを用いてどの記述の情報源であるかを明記してください。 記事の信頼性向上にご協力をお願いいたします。(2013年3月) 黄金比(おうごんひ、英: golden ratio)とは、次の値で表される比のことである: 黄金長方形(縦横の長さの比が黄金比( 1: 1.618…)である長方形)から最大正方形を切り落とすと、元の長方形と相似になる。赤線は黄金螺旋、緑線は正方形内の四分円を接続したものである。黄色は重なっている部分を表す。 以下で述べるような数理的な性質は、有理数にならないこの値のみが持つ性質であり、有理近似等には基本的には意味が無い。「デザインを美しくする」などといった巷間よく見られる説については#用途を参照。小数に展開すると 1 : 1.6180339887... あるいは 0.6180339887... : 1 といった値となる。 黄金比は貴金属比の
前回の議論をより一般化した話です。数式も少なめ。実ビジネスにおいて数学がどこまで貢献できるのかというところを理解してもらい,少なからず関心を持って頂ければ幸いです。ただしあくまで読み物として捉え,実世界ビジネスにおける違法性など指摘をするのはやめて下さい。 目次 1. 『コンプガチャの数理 -コンプに必要な期待回数の計算方法について-』 2. 『「数学的ゲームデザイン」というアプローチ』 3. 『コンプガチャの数理 -ガイドラインに基づいたゲームデザイン その1-』 4. 『コンプガチャの数理 -ガイドラインに基づいたゲームデザイン その2-』 定義 「数学的ゲームデザイン」とは,とある数学モデルのレールに沿ったゲームをデザインすることである。それによって,その背景にある種々の数学的性質を活用して優位な戦略を立てることが可能になる。 コンプガチャは,「The Coupon Collecto
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く