タグ

algorithmとopencvに関するkana321のブックマーク (2)

  • サイゼリヤの間違い探しが難しすぎたので大人の力で解決した

    こんにちは。河です。 僕はサイゼリヤに行くとまずキッズメニューの間違い探しを解くんですが、 今回は難しすぎたので、大人の力(=画像処理)で解決することにしました。 2014年9月版。みんなもやってみよう! (以下、間違い探しの答えが出てきます。見たくない人は↑の画像で頑張ってから読もう。) やり方 いろいろ書いてますが、左面と右面の違う部分を色の差分から見つけてるだけです。 紙の歪みを吸収するために、少しややこしいことをしてます。 (1) 間違い探しページの写真を撮る ↑の写真です。普通にiPhoneで撮りました。 (2) ページ領域を抽出する 画像からページの部分を見つける必要があります。 今回は面倒なので、左側は手作業で指定しました。 角を手作業でタグ付けして・・・ こっちは手作業。 射影変換で台形補正します。OpenCVならWarpPerspectiveです。 台形補正しても、紙が

    サイゼリヤの間違い探しが難しすぎたので大人の力で解決した
  • 第3回 オブジェクト検出してみよう | gihyo.jp

    第1回、第2回と画像認識の基礎とOpenCVについて紹介してきました。第3回目の今回は、いよいよ連載の目玉であるOpenCVを使ったオブジェクト検出に挑戦してみます。 オブジェクト検出の仕組み 基原理のおさらい オブジェクト検出のプログラムを書き始める前に、そもそもどんな仕組みでオブジェクト検出を行っているのかを理解しましょう。 第1回では画像認識の原理として、学習フェーズと認識フェーズがあることを説明しましたが、OpenCVに実装されているオブジェクト検出プログラムもこの流れに従います。つまり、画像から特徴量を抽出し、学習アルゴリズムによってオブジェクトを学習します(詳しくは第1回を参照してください⁠)⁠。 図1 画像認識の流れ OpenCVに実装されているオブジェクト検出プログラムは、Paul Violaらのオブジェクト検出の研究[1]をベースに、Rainer Lienhartらが

    第3回 オブジェクト検出してみよう | gihyo.jp
  • 1