
なお、劣モジュラー性についてさらに知りたい方は、チュートリアル[3]が参考になります。 昨年のNIPSでの動向 それでは、昨年のNIPSでの動向を見てみましょう。 Bach[4]は、L∞ノルムが劣モジュラー関数のロヴァース拡張から導出できることを示すことにより, 劣モジュラー性とスパース性との関係を示しました。さらに, この洞察から教師あり学習で用いることができる新しい3つのノルムを提案しました。また、勾配法や近接法が劣モジュラー関数最適化に使えることを示し, 実験によりL1,とL2ノルムを用いるより精度が良いことを示しました。 Stobbe and Krause[5]は、劣モジュラー関数を凹関数の和として分解できる新しいクラス(decomposable submodular function)を定義し, カット問題, マルコフ確率場の最適化, 集合被覆問題などがその新しいクラスの最小化問
最近、人に本を薦める事が多くなった。とりあえずこの辺を読むといいですよ的なリストを作っておくと便利だと思ったので作ることにした。 以下、「事前知識のいらない入門本」「事前知識はいらないけど本格的な本」「事前知識がないと何言ってるかわからないけど有益な情報が満載な本」の3つにわけて列挙する。 事前知識のいらない入門本 数式少なめ、脳負荷の小さめな本をいくつか。何をやるにしてもデータ構造、アルゴリズム、数学はやっておくと幸せになれるよ。 情報検索と言語処理 データマイニングとか自然言語処理とかやりたい人にはとりあえずこれ。さすがに古い話が多くなってきたのでそろそろ新しい入門用情報検索本がでないかなあと思っている。 図解・ベイズ統計「超」入門 伝説のベイジアン先生がベイズの基礎を教えてくれる本。ベイズやりたい人はこれ。 珠玉のプログラミング データ構造とかアルゴリズムとかの考え方の基礎を教えてく
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く