事前にわかっている確率は $\Pr\{B_i\}$, $\Pr\{A\ |\ B_i\}$ だけでよい。 事後にわかった事実 “女子である” ということから,事後確率 $\Pr\{B_i\ |\ A\}$ を得ようとするのが問題の趣旨である。 2 年生の女子である確率 $\Pr\{B_2 \cap A\} = 45\ /\ 510$ は,2 年生である確率 $\Pr\{B_2\} = 121\ /\ 510$ と 2 年生であるという条件付きでの女子である確率 $\Pr\{A\ |\ B_2\} = 45\ /\ 121$ を用いて乗法定理の ( 2 ) 式から, \[ \begin{align*} \Pr\{B_2 \cap A\} &= \Pr\{B_2\} \times \Pr\{A\ |\ B_2\} \\[5pt] &= \frac{121}{510} \times \frac{