タグ

MachineLearningに関するkitayama_tのブックマーク (2)

  • Google機械翻訳の仕組み&できるようになったこと/まだ難しいことについて、社内の機械学習勉強会で説明します - yasuhisa's blog

    社内の機械学習勉強会で最近話題になった機械学習関連のエントリを取り上げているのですが、ここ一ヶ月ではGoogle Neural Machine Translation(GNMT)がとても話題になっていました。GNMTで使われているEncoder-Decoderやattentionのような仕組みを直近で使う予定は特にはないですが、機械学習を使うエンジニアとして知っておいて損はないし、技術的に何が変わったことにより何ができるようになって、何はまだできないのかを知ろう、というのが目的です。技術的な項目は興味ない人も多そうなので、最後に持っていきました。 Google Neural Machine Translation(GNMT)の最近の進化について できるようになったこと 定量的な評価 まだまだ難しいこと 技術的な詳細 Encoder-decoder Attention based encod

    Google機械翻訳の仕組み&できるようになったこと/まだ難しいことについて、社内の機械学習勉強会で説明します - yasuhisa's blog
  • 尤度関数 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "尤度関数" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2014年9月) 尤度関数(ゆうどかんすう、英: likelihood function)とは統計学において、ある前提条件に従って結果が出現する場合に、逆に観察結果からみて前提条件が「何々であった」と推測する尤もらしさ(もっともらしさ)を表す数値を、「何々」を変数とする関数として捉えたものである。また単に尤度ともいう。 その相対値に意味があり、最尤法、尤度比検定などで用いられる。 B = b であることが確定している場合に、 A が起きる確率(条件付き確率)を とする。このとき

  • 1