タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

DeepLearningとMachineLearningとCNNに関するkoda3のブックマーク (2)

  • SSD: Single Shot MultiBox Detector 高速リアルタイム物体検出デモをKerasで試す - Qiita

    リアルタイムに物体検出するのってどうやるんだろう?と思い調べてみたら、想像以上に高機能なモデルが公開されていたので試してみました。こんな感じです。 自動運転で良く見るようなリアルタイムの物体認識をしています。このモデルは「Single Shot MultiBox Detector(SSD)」という深層学習モデルで、Kerasで動いています。 環境さえ整えればレポジトリをクローンして簡単に実行できます。今回はデモの実行方法をまとめてみます。 環境 ちょっと古いiMacにUbuntu16.04を入れたものを使いました。詳しくはこのへんとかこのへんをご参照ください。 SSD: Single Shot MultiBox Detector 深層学習を利用したリアルタイムの物体検出は次々と新しい技術が公開されているようです。ざっと調べたところ、R-CNN、Fast R-CNN、Faster R-CNN

    SSD: Single Shot MultiBox Detector 高速リアルタイム物体検出デモをKerasで試す - Qiita
  • CNN による画像分類で使われる前処理・テスト時処理まとめ - iwiwi 備忘録

    とりあえず ImageNet 系の論文で、目に入ったものから順々にまとめていきます。情報・ツッコミ歓迎。 前処理・Data Augmentation Mean Subtraction 入力画像から平均を引く。[103.939, 116.779, 123.68] を各ピクセルから引く。VGG はこれ。 Per-pixel Mean Subtraction 入力画像から平均を引く。ピクセル・チャンネルごとに計算された平均を引く。即ち、224x224x3 個の値について個別に平均を計算し用いる。AlexNet 論文から使われており、ResNet もこれ。 Random Crop 256x256 ピクセルに画像をリサイズし、そこから 224x224 のパッチをランダムに取り出す。AlexNet 論文で使われていた。ちなみに Chainer の ImageNet サンプルはこれと Horizonta

    CNN による画像分類で使われる前処理・テスト時処理まとめ - iwiwi 備忘録
  • 1