エネルギーと運動量の関係から求められます。エネルギー(の増加分)ΔEは、力fと移動距離Δsの積ですから、ΔE=f・Δs。一方力fは運動量Pの時間微分ですから、f=dP/dt。この2式からdE/dt=dP/dt・vが得られます(vは速度)。運動量Pは質量mと速度vの積ですから、結局、次の式が得られます。 dE/dt=d(mv)/dt・v さて、ここで質量mが定数として、Eをvの関数として求めると(微分方程式を解くと)、E=1/2・mv^2が得られます。一方、相対性理論では、質量mは速度vの関数で、m=m0/√(1-v^2/c^2)で与えられます(m0は静止質量)。これを上の式に入れて、微分方程式を解くと、E=mc^2が求まります。