タグ

NLPとto seeに関するmogwaingのブックマーク (3)

  • オンラインEMアルゴリズム - DO++

    EMアルゴリズム(Expectation Maximizationアルゴリズム、期待値最大化法、以下EMと呼ぶ)は、データに観測できない隠れ変数(潜在変数)がある場合のパラメータ推定を行う時に有用な手法である。 EMは何それという人のために簡単な説明を下の方に書いたので読んでみてください。 EMのきちんとした説明なら持橋さんによる解説「自然言語処理のための変分ベイズ法」や「計算統計 I―確率計算の新しい手法 統計科学のフロンティア 11」が丁寧でわかりやすい。 EMは教師無学習では中心的な手法であり、何か観測できない変数を含めた確率モデルを作ってその確率モデルの尤度を最大化するという枠組みで、観測できなかった変数はなんだったのかを推定する場合に用いられる。 例えば自然言語処理に限っていえば文書や単語クラスタリングから、文法推定、形態素解析、機械翻訳における単語アライメントなどで使われる。

    オンラインEMアルゴリズム - DO++
  • 係り受け解析: まとめ - moratorium

    係り受け解析: まとめ 2007-06-12 (Tue) 10:24 IS TeXを頑張って覚えて最終レポートを書いたので、ここで晒す事にします。 MEによる日語係り受け解析 素性選択よりは色々な解析手法を試して精度向上したいなぁと思って作業していたのですが、限界が見えてきたので早めにまとめ上げました。 一緒に辻井研に行っているtmym氏がMEでLinear-time dependency analysis for Japanese [Sassano 04]の方式を試していて、面白い結果が出ているので期待。7500文/secって何ですか。 Similar Posts: 係り受け解析: 論文読み 係り受け解析: 実装 close(2) while select(2)ing Newer: 指きたっす Older: ESPer 2007 Comments:0 Comment Form N

  • 教師なし単語分割の最前線。ベイズ meets 言語モデル - 武蔵野日記

    今日は daiti-m さんの教師なし単語分割話と id:nokuno さんの Social IME 話を聞きに行くため、仕事を午前中で終えて一路郷へ。第190回自然言語処理研究会(通称 NL 研、えぬえるけんと発音する)。六木から大江戸線で麻布十番、南北線に乗り換えて東大前で降りたのだが、ちょっと失敗して10分以上 Social IME の話を聞き逃してしまう。残念。 というわけで最初の発表については nokuno さん自身による発表スライドおよびshimpei-m くんのコメントを見てくれたほうがいいと思うが、個人的に思うのは(直接も言ったけど)研究発表とするならポイントを絞ったほうがいいんじゃないかなと。 研究の背景と目的 従来手法の問題点を指摘 それらを解決できる手法を提案(3つ) までは非常にいいのだが、そこから先がそのうちの1つしか説明・評価していないので、ちょっと述べてい

    教師なし単語分割の最前線。ベイズ meets 言語モデル - 武蔵野日記
  • 1