静岡理工科大学情報学部コンピュータシステム学科菅沼研究室のページです.主として,プログラミング言語( HTML,C/C++, Java, JavaScript, PHP, HTML,VB,C# ),及び,システムエンジニアとしての基礎知識(数学,オペレーションズ・リサーチやシステム工学関連の手法)を扱っています.
うちの会社では「グラフ理論を小学校のうちに学んでおかないから、そういうことになるんジャイ!(`ω´)」とか冗談とも本気とも取れないような会話が平気で行き交う。それほどグラフ理論は大切な分野なのにプログラマには見過ごされがちだ。ただ、グラフ理論にはいい本が少ない。そこで、グラフ理論ならこれを読め!という本を紹介する。まずは、入門書としては、左の本がお勧め。 大学の教科書としてよく採用されているのが左の「最適化とグラフ理論 技術者のための高等数学」値段も手ごろだし、高校卒業程度の知識でも読めると思う。 「そんな入門書ではなくて、もっと詳しい本は無いか?」とid:Ozyさんに聞かれて私が勧めたのは、シュプリンガー・フェアラーク東京シリーズの「グラフ理論」 このシリーズは黄色い表紙とお馬さんのマークが目印だ。 これより詳しい本となると日本語で読めるものは発売されていないと思う。「グラフ同型判定問題
C言語標準ライブラリの乱数rand( )は質に問題があり、禁止している学会もある。 他にも乱数には様々なアルゴリズムがあるが、多くのものが問題を持っている。 最も多くの人に使われている乱数であろう Visual Basic の Rnd の質は最低である。 そもそも乱数とは 乱数とは、本来サイコロを振って出る目から得られるような数を意味する。 このような乱数は予測不能なものである。 しかし、計算機を使って乱数を発生させた場合、 次に出る数は完全に決まっているので、予測不能とはいえない。 そこで、計算機で作り出される乱数を疑似乱数(PRNG)と呼び区別することがある。 ここでは、特にことわらない限り乱数とは疑似乱数のことを指すとする。 計算機でソフト的に乱数を発生させることの最大のメリットは、 再現性があることである。 初期状態が同じであれば、発生する乱数も全く同じものが得られる。 このことは
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く