Posted by Jeff Dean, Senior Google Fellow, and Rajat Monga, Technical Lead Deep Learning has had a huge impact on computer science, making...
Autogradという野郎が乗り込んできました。はい、そりゃもういきなり。複雑な確率モデルや損失関数だとしても、パラメータに関する勾配をこれでもかというぐらい簡単に計算できちゃうので、機械学習の世界に大きな影響を与えそうです。現時点では、PythonとTorchでの実装が公開されているようですが、これからJuliaなど他の言語でも実装されていきそうですね。 (補足:この記事を書いたすぐ後にGoogleがTensorFlowなるものを出してきまして、そちらでも自動微分がしっかり実装されてるみたいです〜。機械学習関連のフレームワークは移り変わりが激しいですねー ^^; ) ちなみに始まりはこんな感じでした。 ゆるいですね。 とりあえずチュートリアルやりながら、Python版チュートリアルの前半部分にテキトーな日本語訳をつけたので、ここでシェアしておきます。英語が読める方は、僕のヘンテコな日本語
概要 ここ数年 Deep Learning 勢の隆盛いちじるしい。自分が学生の頃は ニューラルネットワークはオワコン扱いだったのに、、、どうしてこうなった?自分もちょっと触ってみようかな、と記事やらスライドやら読んでみても、活性化関数が〜 とか、 制約付き何とかマシンが〜(聞き取れず。何か中ボスっぽい名前)とか、何言っているのかよくわからん。 巷には 中身がわかっていなくてもある程度 使えるパッケージもいくつかあるようだが、せっかくなので少しは勉強したい。 Python 使って できんかな?と思って探してみると、すでに Theano というPython パッケージの開発チームが作った DeepLearning Documentation 0.1 という大部の聖典 (バイブル) があった。 当然だがこの文書では Theano の機能をいろいろ使っているため、ぱっと見では 何をやってんだかよく
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く