データを確率の枠組みでとらえる「ベイズの定理」 今回は「ベイズの定理」を概説し、この定理をプロジェクト管理にどのように利用するのか説明します。「ベイズの定理」は確率論や統計学において知られている定理であり、さまざまな事象に関するデータを確率論の枠組みで取り扱うことができるという点で有用な定理です。 確率論の枠組みでデータをとらえることができるという点は、確率や統計の知識のある方にとっては特に大きな利点であるように思えないと思いますが、これがまさにベイズの定理の特徴であるということを説明します。 なおベイズの定理はさまざまな応用があります。この定理を使った内容を総じて「ベイズ的」もしくは「ベイジアン」(Bayesian)と呼びます。今回は、ページ数の都合もあり、ベイズ的意志決定に焦点を当て、特にプロジェクト管理における課題を例として説明していきます。 統計を用いた意思決定 ベイズ的意思決定の
印刷する メールで送る テキスト HTML 電子書籍 PDF ダウンロード テキスト 電子書籍 PDF クリップした記事をMyページから読むことができます 前回は、ECサイトのレコメンド技術の種類として、ルールベース方式、コンテンツベースフィルタリング方式、協調フィルタリング方式、ベイジアンネットワーク方式の4つを紹介した。今回は、これらのレコメンド方式をより細分化した上で、協調フィルタリングのロジックについて解説したい。 4つのレコメンド方式は、「レコメンドするために必要な情報は何なのか」、「何をもってレコメンドするためのルールとするか」という切り口で分類していると解説した。それぞれのレコメンド方式は、さらに「どの判別属性を軸にレコメンドアイテムを決定しているのか」という切り口によって細分化できる。その判別属性とは、アイテムベース、ユーザーベース、ユーザー提示情報ベースの3つだ。 例えば
付き合いたくないスパムと付き合うために 受信者の意向を無視して、一方的に送りつけられる迷惑メール(スパム)は、いまやメールボックスを雑音でいっぱいにしてしまい、大事なメールを見過ごしかねないほどの量に膨れ上がり、大きな問題となっています。 残念ながら、このようなスパムを発生源から断つような根本的な対策はいまだになく、私たちは、せめてメールサーバで受け取った大量のメール群からスパムと大事なメールを仕分けしてくれる仕組みに頼らざるを得ません。 スパムを判定する方法は、次の2つに大別することができます。 本稿では前者の方法に着目します。メールを受け取った人にとっては、メールの中身を読めば、そのメールがスパムかそうでないかを判定するのは容易なことです。スパムの定義は、メールを読む人によって変わる可能性があります。例えば、まったくゴルフをしない人にゴルフの勧誘メールが来た場合はスパムといえるでしょう
確率的発想法~数学を日常に活かす スポンサード リンク ・確率的発想法~数学を日常に活かす ■ベイズ推定 最近、ベイズ理論がインターネット技術でクローズアップされている。 ・グーグル、インテル、MSが注目するベイズ理論 http://japan.cnet.com/special/story/0,2000050158,20052855,00.htm 18世紀にトーマスベイズが発案した統計理論。この本の前半で大きく取り上げられていた。 サイコロを振って1がでる確率は6分の1。2回目も連続して1がでる確率は36分の1で、3回連続は216分の1である。実際に何度か振ってみると、その確率と違ったりする。だが、100回や1000回繰り返せば、正確にその数字に近づいていく(大数の法則)。であるから、100回も繰り返せば、次に1がでる確率はかなり正確に予想できるようになる。 では、無差別に選んだ大量のホー
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く