動機 仕事で変化点検知をする機会がありました。その時は時間がなかった事もあり、yokkunsさんがやられていたARIMAモデルを使ったアルゴリズムを参考にさせていただき作りました。ただ、ARIMAモデルだと色々と面倒なところがあったのでkalman filterで書き換えを試みた次第です。 ARIMAモデルの問題点 パラメタ調整が面倒 対象とするwindow以上のデータが溜まるまで解析できない window内に同一データのみが並んだベクトルとなった場合、逆行列が計算出来ない 参考文献 データマイニングによる異常検知 ベイズ統計データ解析 (Rで学ぶデータサイエンス 3) 主に参考にしたのは、みんな大好き「データマイニングによる異常検知」です。 概要 計算ステップは以下のとおりです。 計算は大きく分けて、学習ステップとスコア計算ステップに分けることができます。 学習ステップ こちらは新しいデ
機械学習は全然専門ではない僕が知ったかぶりをするのも何なので*1、もっともっと以前からそこそこやっている*2計量時系列分析の話でもしてお茶を濁してみることにします(笑)。 もうしつこ過ぎて自分でも嫌になってきたんですが(笑)、このシリーズでベースにするテキストは以下の2冊。沖本テキストとHamiltonテキストです*3。他にも良いテキストはあるんじゃないかと思いますが、ここではこの2冊をベースにしていきます。なお、ほとんど沖本テキストからの抜粋なのでお持ちの方はそちらを読んでもらった方が圧倒的に早いです、悪しからず。 経済・ファイナンスデータの計量時系列分析 (統計ライブラリー) 作者: 沖本竜義出版社/メーカー: 朝倉書店発売日: 2010/02/01メディア: 単行本購入: 4人 クリック: 101回この商品を含むブログ (6件) を見る Time Series Analysis 作者
時間とともに変動する現象に対して時間の順序で測定・観測した結果の記録を時系列データと言い、略して時系列(time series)と言う。時系列データは多くの分野で様々な目的で取り扱われる。日常の社会生活の中でよく見受けられるものには、心電図や脳波のような医療データ、気温や気圧のような気象データ、株価および為替レートのような金融・経済データなどがある。 時系列データは、常に変動を伴うものである。その振る舞いを統計的に分析し、データ変動の特徴を捉え、現象の解明と将来の変動を予測・制御しようとするのが時系列データ分析の主要な目的である。 ちなみに、2003年ノーベル経済学賞の受賞の対象となった内容は、経済時系列分析に関するものである。
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く