マンションポエム。それはマンション広告にちりばめられた詩的キャッチコピー。 折り込みチラシや、駅や電車内の広告などでよく見かけると思う。「洗練の高台に、上質がそびえる」(「プラウドタワー白金台」野村不動産より)といったあの名調子のことだ。 このマンションポエム観察をライフワークにしているぼく。今回はさらに踏み込んだ分析をしてみよう。
日本最大の動画投稿サービス「ニコニコ動画」は、動画上を流れるコメントや、自由に編集できるタグ機能といった特徴を持ち、単なる動画共有サービスにとどまらず、コミュニティサイトとしての側面も持つ。多くの人がアクセスする中で「アイドルマスター」「初音ミク(VOCALOID)」「東方プロジェクト」など、いろいろなムーブメントが生まれてきた。 今も毎日多くの動画が投稿されており、各動画は「再生数」「コメント数」「マイリスト数」などの情報がわかるようになっている。すでに投稿動画数は200万本を超えるが、これら膨大なデータを分析することで、どんな現象やコミュニケーションが起きているのかを明らかにしようとするのが今回の発表会の目的である。 分析する際の2つの障壁 独自にデータ収集が必要であること しかし、そもそもニコニコ動画自体はデータを分析しやすいように広く提供しているわけではない。1つ1つの動画の再生数
はじめに 最終回となる今回は、これまでの学習内容のまとめとして、はてなブックマークの人気エントリーをツリーマップとして可視化します。 この可視化では、ノードの表示位置によってブックマークのカテゴリ特性を、ノードの大きさによってブックマーク数を、そして色によってブックマークの「コメント率」を、それぞれ視覚的に表現します。 ソースコードのダウンロード 今回作成するプログラムのソースコードは、こちらから一括してダウンロードすることができます。ZIPファイルを展開して生成されるフォルダを、プロジェクトとしてNetBeansに読み込むことも可能です。 特徴量ベクトルの生成 前回のプログラムでは、はてなブックマークにユーザーが付与したタグの一覧を収集しました。このタグ情報を特徴量ベクトルに変換し、第2回で作成したMultiVectorクラスのインスタンスとして表現することを考えます。 このとき問題とな
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く