強化学習の概要,応用上の利点,適用例,基礎理論,代表的手法,応用に必要な技術などの説明。 本ページの記述は下記の解説記事をもとにWEB用に修正したものである: 木村 元,宮崎 和光,小林 重信: 強化学習システムの設計指針, 計測と制御, Vol.38, No.10, pp.618--623 (1999), 計測自動制御学会. 6 pages, postscript file, sice99.ps (1.31MB) PDF file, sice99.pdf (148KB) 第1章: 強化学習の概要 1.1 強化学習 (Reinforcement Learning) とは? 1.2 制御の視点から見た強化学習の特徴 1.3 応用上期待できること 第2章: 強化学習の適用例:ロボットの歩行動作獲得 第3章: 強化学習の基礎理論 3.1 マルコフ決定過程(Markov decision proc