タグ

MLFlowに関するowtowtowtのブックマーク (2)

  • ハイパラ管理のすすめ -ハイパーパラメータをHydra+MLflowで管理しよう- - やむやむもやむなし

    機械学習をやっている人なら誰もが遭遇したであろうこの光景 (※写真はPyTorchのLanguage ModelのExampleより) Pythonのargparseでシェルから引数を受け取りPythonスクリプト内でパラメータに設定するパターンは、記述が長くなりがちな上、どのパラメータがmodel/preprocess/optimizerのものなのか区別がつきにくく見通しが悪いといった課題があります。 私は実験用のパラメータ類は全てYAMLに記述して管理しています。 YAMLで記述することでパラメータを階層立てて構造的に記述することができ、パラメータの見通しがぐっとよくなります。 preprocess: min_df: 3 max_df: 1 replace_pattern: \d+ model: hidden_size: 256 dropout: 0.1 optimizer: algo

    ハイパラ管理のすすめ -ハイパーパラメータをHydra+MLflowで管理しよう- - やむやむもやむなし
  • MLflowで実験管理入門 | フューチャー技術ブログ

    はじめにこんにちは、Strategic AI Group(SAIG)の山野です。 今回は、機械学習の実験管理をテーマにMLflowについて紹介します。 1. 実験管理の必要性モデル開発では、様々な条件で大量の実験を時には複数人で回していくことがありますが、徐々に管理し切れなくなり、後から(必要に迫られて)もう一度その実験を再現しようと思ってもできなくて困る、ということがあります。 つまり、実験が終わって数ヶ月後に「あの実験てどのような条件で実施してどのような結果出たんだっけ? +再現できる?」と聞かれても困らない状態を作れれば良いです。PoCが終わってプロダクション化のフェーズで、PoCの実験について確認されるケースが意外とあったりします。 管理すべき情報は、前処理・学習・評価それぞれで以下があります。 前処理 元データ <-> 前処理コード <-> 加工済データ 学習 加工済みデータ(学

    MLflowで実験管理入門 | フューチャー技術ブログ
  • 1