PRML 2.3.6に記載の通り、ガウス分布に従う観測値xが与えられたとき、そのガウス分布の平均・精度パラメータの共役事前分布を用いて、xの観測毎に事後分布のパラメータを逐次求めます。 以下のベイズ推定をそれぞれ行います。 xの精度が既知として、共役事前分布としてガウス分布p(u)=N(u|nu,nv)を用いて、xの平均パラメータの事後分布を求めます。 xの平均が既知として、共役事前分布としてガンマ分布p(λ)=Gam(λ|ga,gb)を用いて、xの精度パラメータの事後分布を求めます。 xの平均と精度が未知として、共役事前分布としてガウス-ガンマ分布(正規-ガンマ分布)p(u,λ)=N(u|ngu,(ngbeta*λ)^(-1))Gam(λ|nga,ngb)を用いて、xの平均・精度パラメータの同時事後分布を求めます。 xのプロットに重ねて、以下を示します。 xの精度が既知として、xの平均パ