最近SVM(Support Vector Machine)周りの復習をしているので有名どころのツールと、それに関連する論文をまとめた。完全に個人用メモなので抜けがあるかも。あくまで参考程度に。 ツールは色々あるけれど使うのが目的なら定番のsvmlightやlibsvmがいい気がする。最近だとliblinearが流行っている。SVMといえばカーネル関数とマージン最大化だけれど、最近ではカーネルは線形でいいやという流れになってきている?個人的にはpegasosがわかり易い線形カーネル+オンライン学習になっていて自分で作って遊ぶには良いと思っている。またsvmsgdは"straightforward stochastic gradient descent"と言っているものの非常に高性能で、それを実現するための様々な工夫が施されていて実装を学ぶ上で大変参考になる。ここには挙げていないけれど、線形カ