タグ

パターン認識に関するrti7743のブックマーク (4)

  • パターン認識と機械学習(PRML)まとめ - 人工知能に関する断創録

    2010年は、パターン認識と機械学習(PRML)を読破して、機械学習の基礎理論とさまざまなアルゴリズムを身につけるという目標(2010/1/1)をたてています。もうすでに2010年も半分以上過ぎてしまいましたが、ここらでまとめたページを作っておこうと思います。ただ漫然と読んでると理解できてるかいまいち不安なので、Python(2006/12/10)というプログラミング言語で例を実装しながら読み進めています。Pythonの数値計算ライブラリScipy、Numpyとグラフ描画ライブラリのmatplotlibを主に使ってコーディングしています。実用的なコードでないかもしれませんが、ご参考まで。 PRMLのPython実装 PRML読書中(2010/3/26) 多項式曲線フィッティング(2010/3/27) 最尤推定、MAP推定、ベイズ推定(2010/4/4) 分類における最小二乗(2010/4/

    パターン認識と機械学習(PRML)まとめ - 人工知能に関する断創録
  • SVMによる予測変換 - nokunoの日記

    Google日本語入力のOSS版であるMozcが公開されたので、ソースコードを読んでみました。Google Japan Blog: Google 日本語入力がオープンソースになりました mozc - Project Hosting on Google Code変換アルゴリズムや学習のロジックに関しては、id:tkngさんが早速ブログにまとめていますので、そちらを読むとよいと思います。また何か気づいたことがあったら書いてみたいと思います。Mozc(Google日本語入力)のコードを読んだメモ - 射撃しつつ前転 Mozcのコードで個人的に興味深かったのは予測変換のアルゴリズムでした。私はもともと修論の時に予測変換の研究をしていて、予測変換のトレードオフという問題に取り組んでいました。予測変換は、単純に考えると候補の頻度が高ければ高いほど良いのですが、それだけだと常に最も短い候補が出力されてし

  • サポートベクトルマシン,kemba-svm.exe

    SVMを使うにはカーネルと呼ばれるものを選択しなければならない.kemba-svm.exe がサポートしているカーネルは 線形カーネル RBFカーネル 多項式カーネル partial distance カーネル[1] の4つである.そのほかに予め計算済みのカーネル行列からSVMを動かすこともできるがここでは説明しない. SVMを使うにはカーネルと呼ばれるものを選択しなければならない.現在 libsvm がサポートしているカーネルは 線形カーネル RBFカーネル 多項式カーネル シグモイドカーネル の4つである.ただし,シグモイドカーネルは半正定値カーネルではないので,シグモイドカーネルを使った場合はSVM学習の理論保証は一般に得られない(パラメータの選び方によっては半正定値カーネルになる場合もある).そのほかに予め計算済みのカーネル行列からSVMを動かすこともできるがここでは説明しない.

  • ブースティング - Wikipedia

    ブースティング(英: Boosting)とは、教師あり学習を実行するための機械学習メタアルゴリズムの一種。ブースティングは、Michael Kearns の提示した「一連の弱い学習器をまとめることで強い学習器を生成できるか?」という疑問に基づいている[1]。弱い学習器は、真の分類と若干の相関のある分類器と定義される。対照的に、強い学習器とは真の分類とよく相関する分類器である。 Michael Kearns の疑問への肯定的解答は、機械学習や統計学に多大な影響を及ぼしている。 ブースティングはアルゴリズム的に制限されてはおらず、多くの場合、分布に従って弱い分類器に繰り返し学習させ、それを最終的な強い分類器の一部とするものである。弱い分類器を追加する際、何らかの方法で重み付けをするのが一般的で、重み付けは弱い学習器の正確さに関連しているのが一般的である。弱い学習器が追加されると、データの重み付

    ブースティング - Wikipedia
  • 1