テラーノベルで機械学習を中心に担当している川尻です。最近、グラフニューラルネットワーク(GNN)に注目してサーベイしています。今回は、実際のテラーノベルのデータを簡単なモデルに適用してみたので報告します。 グラフニューラルネットワーク (GNN) グラフニューラルネットワーク(GNN)とは、グラフ理論において対象を「ノード」と「エッジ」からなる「グラフ」として扱うためのニューラルネットワークの一種です。例えば、テラーノベルにおいては、ノードがユーザーや作品の一つ一つを表し、エッジが「読んだ」「いいね」「フォロー」などを表します。ディープラーニングの発展に伴い、GNNの研究も盛んになっており、大規模なデータや様々なタスクに適用されるようになっています[1]。 テラーノベルでのグラフの例 arxivで投稿された年ごとの「Graph Neural Network」がタイトルに含まれている件数 G