シェルピンスキー数(シェルピンスキーすう、Sierpinski number)とは、全ての自然数 n に対して k × 2n + 1 が合成数(素数ではない 2 以上の整数)となるような正の奇数 k のことである。 言い換えると、k がシェルピンスキー数ならば次の集合の元は全て合成数となる。 1960年に、ポーランドの数学者ヴァツワフ・シェルピンスキ (Waclaw Sierpinski, 1882–1969) は、全ての n について k × 2n + 1 が決して素数とならない正の奇数 k が無限にあることを証明した。 1962年に、ジョン・セルフリッジ (John Selfridge) は 78557 がシェルピンスキー数であることを示した。つまり、Sn = 78557 × 2n + 1 は常に合成数となる。なぜならば、簡単な議論によって Sn は 3, 5, 7, 13, 19,