並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 5 件 / 5件

新着順 人気順

plot linear regression python matplotlibの検索結果1 - 5 件 / 5件

  • マテリアルズインフォマティクス(MI)入門①【線形回帰で挑む物性予測と「過学習」の罠】 - LabCode

    訓練データ(教科書)での性能: R²スコアが0.551。これは、モデルが学習に使ったデータの内容を、約55%は説明できていることを示します。完璧ではありませんが、データから何らかのパターンを学習しようとした努力の跡が見えます。 テストデータ(本番試験)での性能: R²スコアが -0.205。これは衝撃的な結果です。マイナスの値は、モデルの予測が「常に全データの平均値を予測する」という最も単純な予測よりもさらに悪いことを意味します。つまり、このモデルは未知の問題に対しては全く役に立たない、むしろ有害でさえあるということです。 過学習の診断:グラフが語るモデルの「病状」 この「訓練データではそこそこ、テストデータでは最悪」という性能の大きなギャップこそが、「過学習」の典型的な症状です。モデルが訓練データに存在するパターンを「丸暗記」することに終始してしまい、物性の背後にある普遍的な法則を学ぶこ

    • 17 types of similarity and dissimilarity measures used in data science. | Towards Data Science

      The following article explains various methods for computing distances and showing their instances in our daily lives. Additionally, it… Various ML metrics. Inspired by Maarten Grootendorst. "There is no Royal Road to Geometry." – Euclid Quick note: Everything written and visualized has been created by the author unless it was specified. Illustrations and equations were generated using tools like

        17 types of similarity and dissimilarity measures used in data science. | Towards Data Science
      • 仮想通貨MLBot つくってみた い ② テンプレートコード - joda!!

        はじめに 5倍が 20倍に!?!?! こんにちは。 jodaと申します。 機械学習を使用した仮想通貨botをつくってみた(い) ということで、 まずは機械学習を利用して、勝てるロジックを見つけていこうと思います。 簡単な自己紹介をさせていただきますと、 自分はここ2年ほど、C++をベースとした為替の自動売買システム(EA)を作って稼働させておりました。 (結果は微妙です) 心機一転、世を賑わせる仮想通貨にも手を出そう! ということで、仮想通貨botをつくっていこうと思ったのですが、 肝心のトレードロジックの検証方法がわからない状況でした。 今回は、まずpnadasを使って検証を行います。 その後、冒頭の画像のように、 機械学習を使ってトレードロジックを改善したいと思います。 (実際の執行が冒頭の画像の様になるとは限りません) 概要 こちらの記事は、 jodawithforce.hatena

          仮想通貨MLBot つくってみた い ② テンプレートコード - joda!!
        • Data Visualization Using Python

          We have seen that Python language is a powerful tool for data science and data operations, but how powerful is Python for Data visualization? One of the key responsibilities of Data scientists is to communicate results effectively with the stakeholders. This is where the power of visualization comes into play. Creating effective visualizations helps businesses identify patterns and subsequently he

            Data Visualization Using Python
          • Version 1.0

            Version 1.0# For a short description of the main highlights of the release, please refer to Release Highlights for scikit-learn 1.0. Legend for changelogs Major Feature something big that you couldn’t do before. Feature something that you couldn’t do before. Efficiency an existing feature now may not require as much computation or memory. Enhancement a miscellaneous minor improvement. Fix somethin

            1