タグ

algorithmとTensorFlowに関するshimanpのブックマーク (2)

  • ディープラーニング(TensorFlow)を使用した株価予想 ~その2~ - Qiita

    前回の続き。 ディープラーニングのフレームワークであるTensorFlowを使用して株価を予想するぞ~、というお話です。ちなみに前回は完全に失敗でした。 前回のコメントで、tawagoさんから「Googleが同じようなことしている」という情報をいただいたので、そちらをコピ・・・インスパイアしてみました。 ##前回との相違点 前回は、「数日分の日経平均を使用して、次の日の日経平均が上がるか、下がるか、変わらないか(3択)を予想する」ものでした。 Googleのデモでは、「数日分の世界中の株価指数(ダウ、日経平均、FTSE100、DAXなど)を使用して、次の日のS&Pが上がるか下がるか(2択)を予想する」という内容でした。 ということで、下記が前回からの主な変更点となります。 「上がるか」「下がるか」の2択 日経平均だけでなく、他国の株価指数も使用 隠れ層x2、ユニット数は50,25 予想する

    ディープラーニング(TensorFlow)を使用した株価予想 ~その2~ - Qiita
  • MNIST for ML Beginnersの数学的な意味合い - neuralnetな日記

    Tensor flowの初めの一歩のチュートリアルであるMNIST For ML Beginners について、数学的な意味合いを書いてみようと思います。 (ブログに不慣れなもので、修正/継ぎ足しながら公開していくことをお許しください) まず、このチュートリアルで実行していることは、 入力がn次元の配列 (は実数)が複数個あった時 、個々の出力 ()を得る写像を用意して、出力が 個々のに対する解 (あるz=1以外はz=0) に近い結果を得れるように、Fを最適化することです。 ここで、の各要素 は実数と書きましたが、これは概念上の話であり、プログラムの実装上ではfloatになります。以後、集合(つまり配列)の要素は数学上は実数ですが、プログラム上はfloatであると考えて下さい。は、となるm個の(実数の)集合です。また任意の要素は0以上であり、したがって、は0から1までの値をとることになりま

    MNIST for ML Beginnersの数学的な意味合い - neuralnetな日記
  • 1