タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

algorithmとAlgorithmと仕事に関するsionsouのブックマーク (2)

  • PageRankアルゴリズムを使った人事評価実験 | 株式会社サイバーエージェント

    2-2-1.一般的な360度評価による評価方法 問題点 一般的に評価プロセスが公開されていないため、最終評価までのプロセスが不透明である 全員が全員を評価するのは多数の社員がいる場合は不可能である ランダム抽出によるお互いの評価を行うと、まったく違う専門分野を評価したり、まったく関わりあいのない人を評価することになり精度が下がる 2-2-2.専門分野での評価者による評価方法 問題点 *評価者になる人材の不足 高い専門スキル、会社とのビジョンマッチ、メンバーからのその専門分野での高い信頼の全てを備えている人材が専門分野毎に必要。 さらに、評価の納得性を保つためにはメンバーからの信頼がある人材ではないと評価できない。 *評価者によって評価ポイントの違いがある 同じ分野の技術者でも、スキルの価値をどこに置いているかというスタンスの違いから評価ポイントにゆらぎが発生する。 さらに評価者自体

  • データマイニングを仕事にする人の生態系 - dataminer.me

    「データマイニングを仕事とする人=データマイナー」はどういう人たちがいるかということについて ビックデータとかで世の中がバズってるけど「僕はデータマイニングをやってます!」といったときに適切にその人がやっている業務領域を把握している人ってかなり少ないと思う。 グリーで働いていたときもデータマイナーはどういった仕事をしていて、何をやっていて何ができるのかっていうことを理解していなくてミスコミュニケーションが生まれていたと思うのでちょっとその生態系についてまとめてみた。おそらく、データマイナーといわれる人は以下のタイプがいる: 研究開発をする人 統計学的に新しいイノベーションを起こせる人。Google のPageRankアルゴリズムを作りましたとか、NetfrixやAmazonのレコメンデーションエンジン作りましたとかいう人がこれにあたる。スキル的には統計学にかなり長けている必要があり、その他

    データマイニングを仕事にする人の生態系 - dataminer.me
  • 1