前回の記事「やってみたら簡単!ディープラーニング・オセロを作って自分を負かすまで強くした話(その1)」の続編です。 前回は、ディープラーニング・オセロのモデルを作って推論させるところまでを説明しました。 今回は、今回はこのモデルをiOSで動作させ、ミニマックス法やモンテカルロ木探索に組み込む方法について説明します。 前回、UIの説明をすると書きましたが、UIそのものはもともと参加していたコンテストであるリバーシチャレンジから提供されていたものを利用していたので、説明としては省略します。 前回はPython中心の記事でしたが、今回はSwift + Core ML中心の記事になります。 コードはこちらにあります。 TokyoYoshida/reversi-charenge ミニマックス法とモンテカルロ木探索ではどうだったか? 結論から言うと、ミニマックス法は強くならず、モンテカルロ木探索は、私