1 はじめに CX事業本部の平内(SIN)です。 前回、Amazon SageMaker(以下、SageMaker)の物体検出(組み込みアルゴリズム)を、SageMaker Neo(以下、Neo)で最適化して、Jetson Nanoで利用してみました。 今回は、イメージ分類(組み込みアルゴリズム)について、確認してみました。 最初に、動作を確認している様子です。GPUがフルに回っていますが、約0.1秒で推論できています。 2 モデル 使用したモデルは、下記で作成したものです。 17種類の商品を回転台に乗せて動画撮影したデータから、イメージ分類のモデルが作成されています。 3 SageMaker Neo 下記の諸元で、上記のモデルを最適化しています。 ジョブ名: ic-SYOHIN17-jetson-Nano-001(任意です) データ入力値: {"data": [1, 3, 224, 22

