タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

algorithmとtechと学習に関するslay-tのブックマーク (2)

  • 文脈化された転置インデックス - Retrieva TECH BLOG

    こんにちは。レトリバの飯田(@meshidenn)です。カスタマーサクセス部 研究チームのリーダーをしており、マネジメントや論文調査、受託のPOCを行なっています。 従来の検索アルゴリズムの問題点 COILの概要 検索時の挙動 学習時の挙動 結果 実験 終わりに 従来の検索アルゴリズムの問題点 従来の検索アルゴリズムの問題点といえば、"意味"を考慮できないということが挙げられます。従来の検索アルゴリズムは、単語一致をベースとして、そのスコアリングをするのが基だからです。そのため、単語が一致しないことによる弊害がおきます。そして、「あー、意味を考慮できたらなー」という発想に至ります。 その結果、クエリも文書もベクトル表現にして計算してしまえ!ということで近年研究が盛んに行われており、BERT1が提案されて以降、教師データがあれば、うまく行くことがわかってきています。さらに、近年、最近傍アル

    文脈化された転置インデックス - Retrieva TECH BLOG
  • 意思決定の理由の可視化が可能なグラフ構造の学習アルゴリズムの紹介 - ZOZO TECH BLOG

    ZOZO研究所の清水です。弊社の社会人ドクター制度を活用しながら、「社内外に蓄積されているデータからビジネスへの活用が可能な知見を獲得するための技術」の研究開発に取り組んでいます。 弊社の社会人ドクター制度に関しては、以下の記事をご覧ください。 technote.zozo.com 私が現在取り組んでいるテーマの1つに、「機械学習が導き出した意思決定の理由の可視化」があります。この分野は「Explainable Artificial Intelligence(XAI)」と呼ばれ、近年注目を集めています。 図.XAIに関連する文献数の推移(引用:https://arxiv.org/abs/1910.10045) その中でも今回はユーザに対するアイテムの推薦問題に焦点を当て、「なぜこのユーザに対して、このアイテムが推薦されたのか?」という推薦理由の可視化が可能なモデルを紹介します。 記事の概要

    意思決定の理由の可視化が可能なグラフ構造の学習アルゴリズムの紹介 - ZOZO TECH BLOG
  • 1