JMDC データサイエンティストの齋藤です。 データ分析の第一歩、EDA(探索的データ分析)にどう取り組んでいますか? 予測のための機械学習の話はよく聞きますが、EDAのための機械学習はあまり目にしないと感じるので、 今回は実務における「XGBoost+SHAPによるEDA」の実践例を取り上げてみたいと思います。 題材は2021年7月にリリースした「新型コロナウイルス感染時の重症化リスクファクターに関する分析結果」です。 https://www.jmdc.co.jp/wp-content/uploads/2021/07/news20210709_2.pdf このブログの内容はテクニカル中心ですが、分析結果自体も面白いのでレポートもご覧いただけると嬉しいです。 XGBoost+SHAPでEDAする理由 分析デザインの概要 Feature Importance SHAP XGBoost+SHA