タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

programmingとalgorithmとqiitaに関するslay-tのブックマーク (2)

  • 二分探索アルゴリズムを一般化 〜 めぐる式二分探索法のススメ 〜 - Qiita

    0. はじめに 二分探索法は単純ながらも効果が大きく印象に残りやすいもので、アルゴリズム学習のスタート地点に彩られた花という感じです。二分探索というと「ソート済み配列の中から目的のものを高速に探索する」アルゴリズムを思い浮かべる方が多いと思います。巨大なサイズのデータを扱う場面の多い現代ではそれだけでも十分実用的ですが、二分探索法はもっとずっと広い適用範囲を持っています。 記事では、二分探索法のエッセンスを抽象化して、適用範囲の広い「二分探索法の一般形」を紹介します。同時に無数にある二分探索の実装方法の中でも「めぐる式二分探索」がバグりにくいと感じているので、紹介したいと思います。 注意 1: 二分探索の計算時間について 二分探索の計算時間について簡単に触れておきたいと思います。例えば「$n$ 個の要素からなるソート済み配列から目的の値を探索する」というよく知られた設定であれば、 単純な

    二分探索アルゴリズムを一般化 〜 めぐる式二分探索法のススメ 〜 - Qiita
  • 2で割ることと3で割ること - Qiita

    この記事でお題にするのはCPUレジスタ上の整数除算です。以下、単に除算とも書きます。 除算は非常に高コストな演算なため、コンパイラは最適化によって、できるだけ整数除算を別の計算に置き換えようとします。 最適化ができる場合の一つとして、割る数が定数である場合があります。頭のいいコンパイラは、除算を乗算とビットシフト等を駆使した演算に置き換えます。この記事では、そういった最適化の背景にある理屈を部分的に解説します。 計算機環境としてはモダンなx86 CPUを仮定します。したがってレジスタは32/64ビットであり、負数は2の補数表現になっています。ある程度は他の命令セットでも通用する話になっているかもしれません。 そもそも整数の除算とは プログラミングにおける整数の除算の定義について確認します。整数$n$を整数$d$で割るとき $$ n = q \times d + r $$ が成り立つように除

    2で割ることと3で割ること - Qiita
  • 1