数に関するslow_stepsのブックマーク (3)

  • 完全トーティエント数 - Wikipedia

    完全トーティエント数(かんぜんトーティエントすう、英: perfect totient number)、完全トーシェント数は、自然数のうち、以下の等式を満たす数 n である。 ここで φ はオイラーのφ関数である。例えば 327 は φ(327) = 216, φ(216) = 72, φ(72) = 24, φ(24) = 8, φ(8) = 4, φ(4) = 2, φ(2) = 1 と 1 になるまで次々と φ 関数の値を計算し、それらの総和が 216 + 72 + 24 + 8 + 4 + 2 + 1 = 327 と元の数に等しくなるので完全トーティエント数である。 一般に完全トーティエント数 n は以下の式を満たす。 完全トーティエント数は無数にあり、そのうち最小の数は 3 である。完全トーティエント数を小さい順に列記すると 3, 9, 15, 27, 39, 81, 111,

    slow_steps
    slow_steps 2010/07/09
    16番目の完全トーティエント数2199 > 完全トーティエント数 - Wikipedia
  • リュカ数 - Wikipedia

    英語版記事を日語へ機械翻訳したバージョン(Google翻訳)。 万が一翻訳の手がかりとして機械翻訳を用いた場合、翻訳者は必ず翻訳元原文を参照して機械翻訳の誤りを訂正し、正確な翻訳にしなければなりません。これが成されていない場合、記事は削除の方針G-3に基づき、削除される可能性があります。 信頼性が低いまたは低品質な文章を翻訳しないでください。もし可能ならば、文章を他言語版記事に示された文献で正しいかどうかを確認してください。 履歴継承を行うため、要約欄に翻訳元となった記事のページ名・版について記述する必要があります。記述方法については、Wikipedia:翻訳のガイドライン#要約欄への記入を参照ください。 翻訳後、{{翻訳告知|en|Lucas number|…}}をノートに追加することもできます。 Wikipedia:翻訳のガイドラインに、より詳細な翻訳の手順・指針についての説明があり

    slow_steps
    slow_steps 2010/04/25
    12番目(322)+13番目(521) = 14番目のリュカ数843
  • 超過剰数 - Wikipedia

    超過剰数(ちょうかじょうすう、英: superabundant number)は自然数 n であって、m < n である全ての自然数 m に対して を満たすようなものである。ただし σ は約数関数である。例えば 12 は σ(12)/12 = (1 + 2 + 3 + 4 + 6 + 12)/12 = 7/3 であり、11 以下の m で σ(m)/m > 7/3 を満たす数はないので、12 は超過剰数である。超過剰数は無数にあり、そのうち最小の数である1から小さい順に列記すると次のようになる:

    slow_steps
    slow_steps 2010/04/25
    14番目の超過剰数720、17番目の超過剰数1680
  • 1