※この記事の1年後に文系エンジニアがCourseraの機械学習コースを1ヶ月で修了したので振り返ってみました。という記事もアップしました。 文系エンジニアが機械学習に入門しようと思うと、どうしても「数学の壁」にぶつかります。 一般的に、機械学習を理解するためには、大学レベルの「微分積分」「線形代数」「確率統計」の知識が必須とされていますが、私のような典型的文系エンジニアの場合、それを学習するための基本的知識自体が圧倒的に不足しているため、まずは高校までの数学を一からやり直してみました。 学習前の私の数学スペック 学生時代の数学の学習歴は高校2年生の2学期位まで。 大学で経済数学の授業があった気がするがほとんど出席していない。 仕事で使った数学知識は三角関数程度。(画像処理ソフトを開発した際に使用) 学習に要した時間 小学校の算数 5時間 中学数学 6時間 数I/数A 12時間 数II/数B