本プログラムの最大の特徴の一つは、全てのトピックについて、演習を中心に構成されている点です。実際に手を動かしながら理解を進めることで、効率よく学習することができます。 実際にモデルを学習させながら技術を習得する本格的な演習内容となっています。Deep Learningは、モデルが実際に学習する様子を観測し、パラメータを調整することでアプリケーションに応じたパフォーマンス最大化を行うことが非常に重要な技術ですが、この一連の流れを全ての演習で経験しながら重要な要素を身につけることが可能です。
Jeremy Howardによる ディープラーニングの素晴らしいコース を受講している間、自分の前提知識がさびついてきているせいで、誤差逆伝播法のような概念が理解しにくくなっていることを認識しました。そこで、理解度を上げるべく、そうした概念に関するいくつかのWikiページをまとめてみることにしました。本記事では、ディープラーニングでよく使われる線形代数演算のいくつかについて、ごく基本的な事項をざっとご紹介します。 線形代数とは? ディープラーニングの文脈での線形代数とは、数の集合を同時に操作するための便利な手法を提供してくれる、数学的ツールボックスです。これらの数値を保持するためのベクトルや行列(スプレッドシート)のような構造体と、それらを加算、減算、乗算、および除算するための新しい規則を提供します。 線形代数が便利な理由 線形代数は、複雑な問題を単純で直感的に理解できる、計算効率の良い問
素人でもディープラーニングが使えるようになる講座がある。そんな案内がNVIDIAから届いた。 ディープラーニングといえば、2016年に囲碁でイ・セドルに勝利した「Alpha Go」や、自動車の自動運転技術に採用されているアルゴリズムだ。 一般的に、ディープラーニングを自分でいじってみようと思うとPythonなどプログラミング言語の理解や、GPUの用意などハードウェア的な面である程度のハードルがある。 そういったハードルの高さから「ディープラーニングってよく聞くけれどどんなものなのだろう」と興味を持っても、説明を読む程度で実際に使用するところまでたどり着かない人も多いだろう。 かく言う私も、プログラミングはJavaの経験が少々あるもののPythonは触ったことがなく、ディープラーニングについては概念図を見てなんとなく理解した気になっていた程度だった。 そんな中届いた「NVIDIA Deep
ここでは少しの間、自律走行車のことは忘れてください。物事は深刻になってきています。この記事では、独自のコードを書くマシンを作ることに的を絞って話を進めていきたいと思います。 GlaDoS Skynet Spynetを使用します。 具体的に言うと、Pythonのソースコードを入力することで、自分でコードを書くように、文字レベルでのLong Short Term Memoryニューラルネットワークを訓練していきます。この学習は、TheanoとLasagneを使って、EC2のGPUインスタンス上で起動させます。説明が曖昧かもしれませんが、分かりやすく説明できるように頑張ってみます。 この試みは、 こちらの素晴らしいブログ記事 に触発され行うに至りました。皆さんもぜひ読んでみてください。 私はディープラーニングのエキスパートではありませんし、TheanoやGPUコンピューティングを扱うのも初めてで
こんにちは、得居です。最近は毎晩イカになって戦場を駆けまわっています。 本日、Deep Learning の新しいフレームワークである Chainer を公開しました。 Chainer 公式サイト GitHub – pfnet/chainer Chainer Documentation Chainer は、ニューラルネットを誤差逆伝播法で学習するためのフレームワークです。以下のような特徴を持っています。 Python のライブラリとして提供(要 Python 2.7+) あらゆるニューラルネットの構造に柔軟に対応 動的な計算グラフ構築による直感的なコード GPU をサポートし、複数 GPU をつかった学習も直感的に記述可能 ニューラルネットをどのように書けるか 次のコードは多層パーセプトロンの勾配を計算する例です。 from chainer import FunctionSet, Vari
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く