タグ

kerasに関するtokuryooのブックマーク (11)

  • TPUで猫の顔のランドマーク検出を1から実装する - Qiita

    の顔のランドマーク検出をやってみました。ただのランドマーク検出のつもりでしたが、MSEと同一の最適解で別の側面からの魔改造した損失関数を投入すると学習を明らかにブーストできる(損失がMSEベースで1/5になる)ことに気づいたので、それがメインになっています。 今回はこれに加えて、ResNet-50から転移学習させ、Google ColabのTPUで訓練させました。 リポジトリ:https://github.com/koshian2/cats-face-landmarks 学習済み係数は一番最後のケース7の損失関数を使って訓練させたものです。 ランドマーク検出とは 画像から要所要所となる点(ランドマーク)を検出するアルゴリズム。顔なら、目、鼻、口、眉毛、輪郭といったポイントを検出します。例としてはOpenCVによる実装があります。 (https://docs.opencv.org/3.4/

    TPUで猫の顔のランドマーク検出を1から実装する - Qiita
    tokuryoo
    tokuryoo 2019/08/09
    ランドマーク検出
  • Amazon.co.jp: PythonとKerasによるディープラーニング: Francois Chollet (著), 株式会社クイープ (翻訳), 巣籠悠輔 (その他): 本

    Amazon.co.jp: PythonとKerasによるディープラーニング: Francois Chollet (著), 株式会社クイープ (翻訳), 巣籠悠輔 (その他): 本
  • kerasでmultiple (複数の) 入力 / 出力 / 損失関数を扱う時のTipsをまとめる - St_Hakky’s blog

    こんにちは。 〇この記事のモチベーション Deep Learningで自分でモデルとかを作ろうとすると、複数の入力や出力、そして損失関数を取扱たくなる時期が必ず来ると思います。 最近では、GoogleNetとかは中間層の途中で出力を出していたりするので、そういうのでも普通に遭遇します。 というわけで私も例に漏れず遭遇しました笑。 今回はkerasで複数の入力や出力、そして損失関数を取り扱うときにどうすればいいかについて実践したのでまとめておきます。 〇「複数の入力」を与えたい場合 これは簡単です。普段Modelのインスタンスを作る際に、inputsとoutputsを指定すると思いますが、その際に複数ある場合はリスト形式で渡せばいいだけです。 input_layer1 = Input(shape=(32,)) input_layer2 = Input(shape=(64,)) # ...(モ

    kerasでmultiple (複数の) 入力 / 出力 / 損失関数を扱う時のTipsをまとめる - St_Hakky’s blog
  • Kerasのノウハウ覚え書き (Keras 1.x.x版) - Qiita

    注意:この記事はKeras 1.x.x向けです Keras 2.x.x向けはこちら。 とりあえずマニュアル 見落としがちですが、メニューの下の方にも結構色々重要(?)なものがあります。 コールバック EarlyStopping、各エポックでのモデル保存、学習率の調整、、etc Applications 事前学習済みのモデル 可視化 モデルを画像化してくれるやつ などなど。 読むと楽しいソース Examples だいぶ色々入ってます。VAEとかHRNNとかBidirectional LSTMとか。 事前学習済みのモデル(の実装) 昔はExamplesに入っていた気がするVGGとかResNetとか。 細かいノウハウ(?)やコピペ用コード片など モデルのsave/load モデルのsave/loadは、ググると重みとモデル(json or yaml)を別々に保存したりしている例がよく出てきますが

    Kerasのノウハウ覚え書き (Keras 1.x.x版) - Qiita
  • Practical Deep Learning for Coders - 人工知能に関する断創録

    最近、fast.aiのPractical Deep Learning for CodersというMOOCを受講している。 この講座は 無料 動画形式の講義(1回2時間というボリューム) Jupyter NotebookとKerasを使用 CNN、Finetuning、VGG16、ResNet、RNNなどが実践的な例題を通して学べる 実務家がDeep Learningで自分の問題を解決できることが目標 という特徴がある。講義内容は高度で実践的なものが多い印象。例えば、Lesson1でMNISTと思いきや・・・いきなりKaggleのDogs vs. CatsをVGG16 + Finetuningで解いてKaggleに投稿するところまでが課題になっている。これさえできれば画像認識が必要ないろんな課題に同じ技術を適用できるとのこと。 今はまだPart1しかないが、ForumのなかでPart2の動画

    Practical Deep Learning for Coders - 人工知能に関する断創録
  • Kerasで学ぶAutoencoder

    Kerasの公式ブログにAutoencoder(自己符号化器)に関する記事があります。今回はこの記事の流れに沿って実装しつつ、Autoencoderの解説をしていきたいと思います。間違いがあれば指摘して下さい。また、Kerasの公式ブログはKerasでの実装に関してだけでなく、機械学習自体についても勉強になることが多く、非常におすすめです。 今回の記事では様々なタイプのAutoencoderを紹介しますが、日語ではあまり聞き慣れないものもあるかと思いますので、今回は名称を英語で統一したいと思います。 目次 イントロダクション Undercomplete Autoencoder Sparse Autoencoder Deep Autoencoder Convolutional Autoencoder Denoising Autoencoder まとめ イントロダクション Autoencod

    Kerasで学ぶAutoencoder
  • DQNをKerasとTensorFlowとOpenAI Gymで実装する

    はじめに 少し時代遅れかもしれませんが、強化学習の手法のひとつであるDQNをDeepMindの論文Mnih et al., 2015, Human-level control through deep reinforcement learningを参考にしながら、KerasとTensorFlowとOpenAI Gymを使って実装します。 前半では軽くDQNのおさらいをしますが、少しの強化学習の知識を持っていることを前提にしています。 すでにいくつか良記事が出ているので紹介したいと思います。合わせて読むと理解の助けになると思うので、是非参考にしてみてください。 DQNの生い立ち + Deep Q-NetworkをChainerで書いた DQNが生まれた背景について説明してくれています。Chainerでの実装もあるそうです。 ゼロからDeepまで学ぶ強化学習 タイトルの通り、ゼロからDeepま

    DQNをKerasとTensorFlowとOpenAI Gymで実装する
  • Kerasで学ぶ転移学習

    前回記事では、KaggleのFacial Keypoints Detectionを題材にして、単純なニューラルネットワークから転移学習まで解説しました。 事前に学習した重みを読み込んだ後、全ての層で学習するのではなく、一部の層をフリーズさせることもできるという話を最後に少しだけしました。ちょうどその後、転移学習について詳細に解説しているKerasの公式ブログ記事が公開されましたこともあり、今回はこの記事を参考にしつつ、転移学習をメインに解説していきます。間違いがあれば指摘してください。今回もFacial Keypoints Detectionのデータを使って解説していくので、前回記事も是非合わせて読んでみてください。 また、Keras 1.0.4が公開されたのでまだの人はアップデートしておくと良いかと思います。 目次 転移学習 可視化 全結合層のみ学習(前回モデル) 全結合層+一部の畳み込

    Kerasで学ぶ転移学習
  • Keras Documentation

    Keras: Pythonの深層学習ライブラリ Kerasとは Kerasは,Pythonで書かれた,TensorFlowまたはCNTK,Theano上で実行可能な高水準のニューラルネットワークライブラリです. Kerasは,迅速な実験を可能にすることに重点を置いて開発されました. アイデアから結果に到達するまでのリードタイムをできるだけ小さくすることが,良い研究をするための鍵になります. 次のような場合で深層学習ライブラリが必要なら,Kerasを使用してください: 容易に素早くプロトタイプの作成が可能(ユーザーフレンドリー,モジュール性,および拡張性による) CNNとRNNの両方,およびこれらの2つの組み合わせをサポート CPUGPU上でシームレスな動作 Keras.ioのドキュメントを読んでください. KerasはPython 2.7-3.6に対応しています. ガイドライン ユーザー

    tokuryoo
    tokuryoo 2016/06/13
    日本語訳
  • KerasをTensorFlowバックエンドで試してみた:「もっと多くの人に機械学習とDeep Learningを」という時代の幕開け - 渋谷駅前で働くデータサイエンティストのブログ

    (左:Keras、右:MXnet) Kaggle Masterの間ではMXnetよりさらに人気なDeep Learningフレームワークというかラッパーが、@fchollet氏の手によるKeras。 Keras Documentation 結構苦心したのですが、ようやく手元のPython環境で走るようになったので、試してみました。なおKerasの概要と全体像についてはid:aidiaryさんが詳細な解説を書いて下さっているので、そちらの方を是非お読み下さい。 追記 Kerasは人気のフレームワークなので、僕なんぞがこんなブログ記事を書く前から素晴らしい紹介記事・スクリプトが幾つもあります。こちらでは参考までに以下のお二方のものをご紹介させていただきます。 Kerasはレゴブロックを組み合わせるかのようにして、簡単にディープラーニングのモデルを作成できる便利なライブラリです。これを使って楽し

    KerasをTensorFlowバックエンドで試してみた:「もっと多くの人に機械学習とDeep Learningを」という時代の幕開け - 渋谷駅前で働くデータサイエンティストのブログ
  • http://www.mathgram.xyz/entry/keras/mnist

    http://www.mathgram.xyz/entry/keras/mnist
  • 1