タグ

deep learningに関するtoshiki_takahashiのブックマーク (2)

  • 高次元ベクトルデータ検索技術「NGT」の性能と使い方の紹介

    この結果を見て単語ベクトルが変わるとNGTの性能が変わってしまうように感じた方がいるかもしれません。しかし、実はこれらの単語ベクトルはデータの次元数や件数が違っているため、それぞれの条件をあわせてみる必要があります。興味がある方は論文を読んで見比べて欲しいと思いますが、ここで重要なことは、NGTが高い精度にも関わらず、せいぜい100ミリ秒程度で検索できるという規模感であるということです。その規模感を感じてもらうために、これらの実験結果をご紹介しました。この実験以外にも論文の中では単語ベクトルの応用としてアナロジーと呼ばれる合成ベクトルでの実験やその他の比較手法の比較、実験結果の考察などもありますが今回は割愛します。 これまで紹介した内容と同じような実験はLinux系のサーバーであれば公開しているExperimental softwareという実験プログラムを使うと簡単に試すことができます。

    高次元ベクトルデータ検索技術「NGT」の性能と使い方の紹介
  • Deep Learningによる画像認識を可能にする最も簡単なWebプラットフォーム「Labellio」のリリースのお知らせ - Alpaca技術ブログ

    日6/30にAlpaca(http://www.alpaca.ai/, blog: http://blog-jp.alpaca.ai/)はDeep Learningによる画像認識を可能にする最も簡単なWebプラットフォーム「Labellio(ラベリオ)」(URL: https://www.labell.io/ja/)をリリースしました。 リンク: Labellio ロゴ 代表画面 モデル一覧ページ ラベル付けページ モデル構築ページ 背景 近年の機械学習関連技術の発達により、Deep Learningを用いた画像の認識精度は人間に迫るレベルに達しました。しかし、そのソフトウェアとGPUを用いた計算環境のセットアップ、画像の管理、作成されたモデルのプロダクトへの有効利用と、実際に画像認識を行う上での課題はたくさんあります。 Labellioはそのようなソフトウェア、計算環境、有効利用などの

    Deep Learningによる画像認識を可能にする最も簡単なWebプラットフォーム「Labellio」のリリースのお知らせ - Alpaca技術ブログ
  • 1